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Abstract

A large volume of CCD X-ray spectra is being generated by the Chandra X-ray Observatory
(Chandra) and XMM-Newton. Automated spectral analysis and classification methods can aid in sorting,
characterizing, and classifying this large volume of CCD X-ray spectra in a non-parametric fashion,
complementary to current parametric model fits. We have developed an algorithm that uses multivariate
statistical techniques, including an ensemble clustering method, applied for the first time for X-ray spectral
classification. The algorithm uses spectral data to group similar discrete sources of X-ray emission by
placing the X-ray sources in a three-dimensional spectral sequence and then grouping the ordered sources
into clusters based on their spectra. This new method can handle large quantities of data and operate
independently of the requirement of spectral source models and a priori knowledge concerning the nature of
the sources (i.e., young stars, interacting binaries, active galactic nuclei). We apply the method to Chandra
imaging spectroscopy of the young stellar clusters in the Orion Nebula Cluster and the NGC 1333 star
formation region.
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1. Introduction

Chandra X-ray Observatory (Chandra; see Ref. [1]) studies often involve X-ray source
populations with hundreds or thousands of members. Significant Chandra surveys to date
include: deep galactic surveys [2], the galactic center [3,4], the Chandra Multiwavelength Project
(ChaMP; see Ref. [5]), and nearby galaxies [6]. In addition, the XMM-Newton European Photon
Imaging Camera (EPIC) Catalogue (2XMMp 2006) already contains over 100,000 sources.

Statistics will play an important role in analyzing these data. Automated statistical algorithms
can systematically sift through this volume of high quality X-ray data. Objective, model-
independent methods may be used to identify X-ray spectral classes in the vast population of
sources detected in these and other large scale surveys to:

– group X-ray emitting objects with like spectra into classes for further study and possible
analysis en masse,

– search for trends in X-ray and stellar properties (e.g., X-ray luminosity and X-ray temperature
with stellar photospheric temperature [7]),

– efficiently identify groups of X-ray sources that have no visible counterparts, including
sources that may be very young protostars,

– find additional pre-main-sequence (PMS) accretors exhibiting sustained accretion bursts to
study the relationship between hard X-ray emission and optical emission for these sources [8,
9],

– guide or fine-tune downstream automated fitting of physical source models to individual
source spectra by first sorting young stars into natural groupings.

Furthermore, the resulting classes may be used to discriminate spectroscopically between
several known emission classes (i.e., stellar coronal emission, OB winds, jets, and extragalactic
contaminants).

Few techniques exist for classifying X-ray sources (see a brief review in Ref. [19]). Our
spectral classification algorithm groups X-ray sources based on their X-ray spectra and can
handle large quantities of data [10]. Spectral source models and a priori knowledge concerning
the nature of the sources (e.g., young stars, interacting binaries) are not required by the
algorithm. Our technique employs Principal Component Analysis (PCA; see Refs. [11–13]) to
reduce the dimensionality of spectral bands for subsequent clustering. PCA provides a means
to automatically define optimal spectral band definitions from the data set itself, rather than
imposing bands on the data, such as in hardness ratios.

Using PCA followed by an ensemble classifier, our algorithm groups similar discrete sources
of X-ray emission by placing the X-ray sources in a three-dimensional spectral sequence and
then grouping the ordered sources into clusters based on their spectra. X-ray sources exhibiting
unusual spectra fall outside this 3-D locus. This approach could reveal classes of sources that do
not fit any existing spectral models and/or X-ray sources that are extreme spectral outliers.

Here, we describe in detail our statistical method for X-ray source classification. We
summarize its application to the young stellar cluster in the Great Nebula in Orion and present
preliminary results for the NGC 1333 star formation region.

2. COUP data preparation

The algorithm was developed and tested using a subset of the long integration Chandra Orion
Ultradeep Project observation (COUP; see Ref. [14]). The COUP observation of the Orion
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Nebula Cluster (ONC), an ∼838 ks exposure obtained over a 13-day period in January of 2003,
represents the most sensitive and comprehensive description of X-ray emission from a young star
cluster [15,16]. Getman et al. [14] performed fundamental data reduction on the COUP data set,
including extracting valid events, detecting X-ray emitting sources, and flagging potential source
detection problems and artifacts.

A subset of the 1616 COUP sources was selected for use in developing and testing the
classification algorithm described here. Sources with less than 300 counts were eliminated, to
restrict the sample to those with higher signal-to-noise CCD spectra. Over 70% of the sources
in our subset had counts more than twice this lower limit. Sources that were flagged as a double
source, a piled-up source, and/or in a source extraction region crossing a bright source readout
trail were also eliminated from the sample. The remaining sample contained 444 sources with
high quality CCD imaging spectra.

The 0.4–8.2 keV spectra were rebinned into a number of non-overlapping spectral bands.
Band locations and widths were defined based on hardware constraints, with care taken not to
bisect key emission features (see Appendix of [19]). The source spectra were normalized for
brightness level and a nonlinear monotone transformation [17] was performed prior to dimension
reduction solely in an attempt to remove nonlinearities in the data.

3. X-ray spectral classification algorithm

The spectral classification algorithm consists of the following steps: PCA, agglomerative
hierarchical clustering [18], and K -means clustering [18].

PCA was used to reduce the dimensionality in the data set by identifying X-ray spectral bands
that are most discriminatory based on their contribution to the variance over the entire data set.
Several statistical stopping rules were applied to determine the number of principal components
(PCs) to retain for the clustering analysis [10]. These tests indicated that two to four PCs are
sufficient to represent the variability in the data set. We chose to retain four PCs for the ensuing
clustering steps. The variance explained by these components is 62.3%, 30.7%, 2.2%, and 1.9%
respectively, representing 97.1% of the total variance in the data set. Plots of the eigenvectors that
correspond to these first four components are shown in Fig. 1. The x-axis of the eigenvector plots
corresponds to the 42 X-ray spectral bands (see the Appendix of [19]). The y-axis corresponds
to the eigenvector coefficient (arbitrary units).

The first eigenvector peaks sharply at ∼1 keV and is negative for energies >1.5 keV. Hence,
large positive values of PC1 could be interpreted as indicative of sources with the softest X-ray
spectra, while large negative values of PC1 correspond to the hardest sources. The peak in the
second eigenvector (∼1.5 keV) is shifted to a slightly higher energy and is broader than that of the
first eigenvector; the value of this eigenvector also remains nearly zero (less negative than PC1)
for energies >2.5 keV. Hence, large values of PC2 are indicative of sources with intermediate
spectral hardness. The plots of the third and fourth eigenvectors indicate that large values of PCs
3 and 4 could be indicators of sources that have both soft and hard X-ray components. The hard
X-ray component indicated by larger values of PC4 is broader and of higher energy than that of
PC3.

An ensemble classifier consisting of two unsupervised clustering methods – agglomerative
hierarchical clustering and K -means clustering – was applied following PCA in an attempt
to determine a “natural” partitioning of the data set into a number of relatively homogeneous
clusters of X-ray sources. First, an agglomerative hierarchical clustering method based on
Euclidean distance and complete linkage [18] was used on the first four PCs generated from
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Fig. 1. Eigenvector plots for the four principal components.

the X-ray source spectra. The method begins by assigning each X-ray source to its own cluster
and calculating the Euclidean distance between each cluster and all other clusters. In the first
amalgamation step, the closest two (i.e., at smallest Euclidean distance) clusters are joined. In the
next step, either a third source joins the two that were joined in the first step or two other sources
are joined together. Close groups are successively merged in this hierarchical or nested fashion,
based on the Euclidean distances between pairs of clusters. Cluster merging continues until there
is only one large cluster containing all the sources. To determine the final number of groups, the
pattern of changes in the distance value was examined to find a large jump in the metric between
amalgamations. The number of groups in the final clustering must be logical for the data set. For
example, if the partitioning results in a large number of groups relative to the number of sources,
then many groups will likely be small and indistinct. If too few groups are chosen, then the groups
may be very large and inhomogeneous [13]. The resulting dendrogram (see Fig. 2) indicates
where and how the source sample was broken into groups. The branches of the dendrogram
show not only how the clusters were formed but also indicate the distance between clusters.
This procedure yielded 17 groups in the final partition for our 444-source COUP subsample.
The horizontal dashed line in Fig. 2 illustrates where the dendrogram was cut. A disadvantage
of hierarchical clustering is that it cannot transfer a source from one cluster to another if the
source was grouped incorrectly in an earlier step. Therefore, the K -means algorithm was used to
fine-tune the clusters obtained from the hierarchical clustering algorithm.

K -means does not assume or require multivariate normality of the input data. It groups obser-
vations into a collection of K clusters, where K must be identified in advance. The hierarchical
clustering algorithm was used to obtain a value of K and the clusters obtained by the hierar-
chical clustering algorithm were used as the initial partition for the K -means algorithm. Each
source was examined and assigned to the group with the nearest centroid (multi-dimensional
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Fig. 2. Dendrogram resulting from hierarchical clustering on the COUP subset. The dashed line shows where the
dendrogram was cut, resulting in 17 classes. Each class is represented by a different color.

mean) in PCA space. In some cases, this resulted in a source being reassigned to a new group,
after which the centroids were recalculated for the group receiving the reassigned source and for
the group losing the source. This process was repeated until no further reassignments took place.
The resulting distance between each source and the centroid of its spectral class was smaller
than the distance between the centroids of the spectral classes. We also ran the algorithm with
different numbers of clusters in the output of the agglomerative hierarchical clustering step. The
distance results were worse, as well as the final cluster membership, when examined manually.

4. Analysis of results for the ONC

Our analysis of the sample of 444 X-ray emitting objects resulted in 17 X-ray spectral classes
of sources (see Table 2 in Ref. [19]). A plot of the first two PCs for each source is shown in Fig. 3.
The plot is color-coded by class. These colors do not match the colors in the dendrogram in Fig. 2
because the classes in the dendrogram show an intermediate state of the ensemble classifier: after
hierarchical clustering and before K -means clustering.

Average spectra of some of the final X-ray spectral classes are shown in Fig. 3. The
progression of classes moving clockwise around the horseshoe-shaped plot forms a sequence
of decreasing spectral hardness. Strong similarities between spectra of a given class were found,
whereas fundamental spectral differences were found between different classes. However, the
higher numbered classes do not appear to be physically distinct in this 2-D score plot. The
separation in the classes is more readily seen when this PC2 vs. PC1 plot is rotated about the PC2
axis (see Fig. 4). There is curvature in the third dimension (PC3) that can be seen only in the plots
in Fig. 4. PC3 breaks a degeneracy between parameters apparently mixed on the PC2 vs. PC1
plot for many of the classes. However, the higher numbered classes still form more of a sequence
along the 3-D locus. Nearly all of the X-ray sources in the input sample lie in a single spectral
sequence in Fig. 3 with the notable exception of class 17. This 3-D locus of points contains three
principal regions corresponding to different groups of X-ray spectral energy distributions (SEDs)
present in the 444-source COUP sample. Classes 1–6 form a sequence of very hard spectra with
decreasingly prominent Fe line emission in the 6.4–6.7 keV region as one moves “up” (increasing
PC2) the left side of the horseshoe-shaped plot. Classes 7–11 display SEDs with strong peaks at
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Fig. 3. Plot of only the first two principal components showing the source classes. The class numbers increase moving
clockwise around the horseshoe. Average spectra for some of the classes are shown.

Fig. 4. Rotation of PC2 vs. PC1 plot about the PC2 axis. The plot on the right shows the horseshoe edge-on.

∼1.5 keV and prominent high energy tails. The softest X-ray spectral classes, 12–16, have SEDs
that peak at ∼1.0 keV. The strength of this peak relative to the (weak) high energy tails in the
average spectra of these classes increases as one moves “down” the right side of the horseshoe
in Fig. 3.

The only source in class 17, the Beehive Proplyd [20], is isolated from the other sources in
the plot due to its unique double-peaked X-ray spectrum, indicative of a combination of strong
shocks in the jet collimation region and a variable, magnetically active X-ray source. The correct
identification of this source as an outlier by our algorithm holds promise for the discovery of
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additional examples of such hybrid X-ray spectra among the tens of thousands of PMS stars
detected thus far by Chandra and XMM-Newton.

The resulting X-ray spectral classes were compared with known optical and near infrared
(ONIR) properties of the young stellar population of the ONC [19]. Sources in class 1 are easily
identified as a distinct X-ray spectral group by our technique (Fig. 3, Fig. 4). These sources
lack ONIR counterparts and exhibit high amplitude, fast-rise X-ray flares [15]. These sources
are candidate deeply embedded protostars that show evidence for fluorescent iron line emission
arising in cool circumstellar disk material [19]. Trends have been found between X-ray spectral
parameters and stellar parameters for very low mass, soft spectra, young sources. Specifically,
the hydrogen column density (NH ) decreases monotonically from class 1 to class 16. The large
log NH value for classes 1 through 8 results in small fractions of ONIR counterparts within those
classes. For classes 11 through 15, which have relatively large numbers of ONIR counterparts,
our analysis reveals an apparent trend of increasing spectral softness with decreasing Teff. In
addition, the near infrared excess is observed to decrease monotonically from class 10 to class
16, suggesting a generally decreasing accretion rate.

To assess the robustness of the classifications to measurement errors, we did the following.
Three of the faintest sources from classes 2, 11, and 14 were selected from the COUP subsample
to test the effect of random noise fluctuations. Sources were chosen from the “edge” of each class
“cloud”. The spectrum for each of the three sources was perturbed five times to simulate random
noise. Each of these 15 “new” sources was then classified using the algorithm. The algorithm
assigned each new source to the same class as that of the original unperturbed source.

To aid in interpretation of the plot in Fig. 3, simulated X-ray source spectra were generated
and then processed using the spectral classification algorithm (see [19]). The distribution of
the resulting simulated X-ray spectra in PC space reproduces the fundamental shape of the
horseshoe-like distribution formed by the COUP subsample. Moving clockwise around the
horseshoe, the simulations form a sequence of monotonically decreasing NH . This indicates
that the position of a COUP source on the horseshoe is determined in large part by the
degree of its obscuration by intervening cloud or circumstellar material. The importance of
NH to the membership of the source classes is particularly apparent along the left side of the
horseshoe. At the other extreme, the high numbered classes (14–16) appear to form a sequence
of decreasing thermal plasma temperature (kT ), indicating that this parameter is more important
than intervening absorption in determining the positions of sources along the right side of the
horseshoe. Simulations with kT greater than 0.26 keV but less than 4 keV bound the majority of
the data set.

5. Beyond Orion: Algorithm extension to other star formation regions

The existing X-ray spectral classification algorithm was extended to X-ray sources in other
star formation regions. The extended algorithm was tested on several Chandra ACIS-I archival
observations of star formation regions, to determine whether the relationships between X-
ray spectral classes and fundamental stellar parameters found in the ONC generalize to other
star forming regions. Preliminary results are shown for NGC 1333, a well-characterized star
formation region located at a relatively small distance providing good photon counting statistics
for extraction of spectra.

The extended algorithm consists of the following procedure: calculate discriminant functions
for each of the existing X-ray classes based on generalized squared distances using PC1 through
PC4 and cross-validation; calculate PCs for the additional X-ray sources using the COUP
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Fig. 5. Plot of the first two principal components showing the NGC 1333 sources overlaid on the COUP principal
component plot. Each of the 17 NGC 1333 sources is enclosed within a box. Two NGC 1333 sources with nearly
identical RA and DEC are enclosed within a dotted-line box.

eigenvectors; calculate discriminant scores for each additional X-ray source; and assign the
additional X-ray sources to an existing X-ray spectral class based on posterior probabilities.

5.1. NGC 1333 data preparation

A web-based database, An Archive of Chandra Observations of Regions of Star Formation
(ANCHORS; see Ref. [21]), has been developed by the Harvard–Smithsonian Center for
Astrophysics. Currently, the database contains X-ray source properties for ∼50 Chandra fields
totaling 10,000+ sources. The ANCHORS source detection data set was used for the ∼43 ks
Chandra observation of NGC 1333, a highly active star formation region within the Perseus
molecular cloud complex noted for its large population of protostars and young stellar outflows
[23]. We then used standard CIAO tools and IDL to extract spectra. Detected sources with fewer
than 100 total counts were eliminated, to limit faint sources with poor photon counting statistics.
This resulted in a subset of 28 out of 90 detected sources. Class membership probabilities were
calculated for the 28 X-ray sources. Seventeen of the sources have class membership probabilities
of 0.94 or greater. Five sources have membership probabilities between 0.80 and 0.90, three
sources have membership probabilities between 0.70 and 0.79, and the final three sources have
membership probabilities less than 0.70. Fig. 5 shows the resulting classification of the 17 NGC
1333 sources with membership probabilities of 0.94 or greater, combined with the plot of COUP
sources in Fig. 3.

The 17 NGC 1333 sources are enclosed within boxes. Two NGC 1333 sources with nearly
identical RA and DEC are enclosed within a dotted-line box in class 8. One of the two sources
is a known, deeply embedded, classical T Tauri star [22]. The other component is an X-ray
discovered companion with a projected separation of 2

′′

[23]. The two components have nearly
identical spectra with log NH of 22.2, suggesting that they may constitute a physical binary [23].
Source 22 is a young stellar object (YSO) in NGC 1333 that our algorithm correctly placed in
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class 3, consistent with object classification obtained from the ONC data set. In Fig. 5, it appears
to be located closer to the centroid of class 2 rather than that of class 3. However, this plot only
shows the first two PCs. Four PCs were used to classify the sources. When a 3-D plot of the
horseshoe is viewed, it is clear that Source 22 is much closer to the centroid of class 3 than that
of class 2.

Known optical properties of the 17 NGC 1333 sources [23] fall within the ranges for their
corresponding COUP X-ray classes, following the trends found for the ONC. From this data set,
it can be seen that the application of our algorithm to NGC 1333 sources demonstrates that the
general classification results for Orion are followed closely by a second star formation region.

6. Summary and conclusions

It is clear that X-ray spectra have continuous characteristics and the principal components
derived from them are not distributed in completely separated classes in two dimensions. This
is not uncommon in astrophysics. For example, the optical stellar spectral classification system
of O, B, A, F, G, K, M, each with 10 sub-types, has its basis in the optical spectra of stars
and has some ambiguity between sub-types. However, separation of spectra into classes helps in
understanding the underlying physics of the objects in each group.

We have developed an algorithm and corresponding input variable definition that is
nonparametric and performs without a priori information concerning the nature of the X-ray
sources. It objectively sorts and clusters X-ray sources into natural groupings based solely
on observables, thereby guiding downstream automated fitting of physical source models.
Furthermore, once grouped spectrally, sources within the same spectral group may be sufficiently
similar as to be treated identically (and analyzed en masse) for the purpose of further spectral
analysis employing physical models.

The algorithm was applied to X-ray spectra of sources detected in the COUP observation of
the ONC. The clustering allows for the beginning of the understanding of the changes in the
PMS stars over the range of values in the space defined by the four PCs. The apparent diversity
of source spectra is reduced to a 3-D locus in PC space. Nearly all PMS stars lie in a single
spectral sequence and stars with strong, impulsive flares tend to fall in the lowest numbered
classes while stars exhibiting more consistent but lower level coronal activity tend to fall in the
higher numbered classes. Some of the X-ray spectral classes have been shown to be unique.
In addition, sources with unique and unusual observed spectra are offset from the 3-D locus of
sources.

The grouping of the sources into clusters is somewhat a matter of convenience and helps us
to discuss the physical properties of a source with respect to its location in the horseshoe-shaped
plot. The cluster membership has been determined from the first four PCs, not just PC1 and PC2,
and the plot shown in Fig. 3. More analysis needs to be done to determine the meaning of PC3
and PC4 in relation to class membership and how PC3 and PC4 contribute to the cluster shapes
and locations.

Preliminary results from applying the algorithm to X-ray sources detected in the shorter
exposure observation of NGC 1333 show that young stars in this region fit into the previously
established statistical ONC groupings and exhibit the same trends between X-ray spectral
parameters and stellar parameters as are exhibited by PMS stars in the ONC. These results
demonstrate that the general classification results for Orion are followed closely by a second
star formation region.
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The results from Orion and NGC 1333 indicate that our non-parametric approach to X-ray
spectral classification can yield basic information concerning the nature of X-ray emission from
young stars. In addition, this algorithm can be used to efficiently identify very young X-ray
sources that lack ONIR counterparts, display strong Fe K − α line emission, and display large
amplitude, fast-rise impulsive flares versus more low level activity. Finally, trends between X-
ray spectral parameters and stellar parameters have been found for very low mass, soft spectra,
young sources. These trends are of significance to the study of star formation in young stellar
clusters.
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