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ABSTRACT

Context. The Cygnus OB2 association, the central engine of the Cygnus X star-forming region, is the subject of an extensive
INTEGRAL Key Project that will accumulate 6Ms of observations. Analysis of 2Ms of observations by De Becker and co-workers
provides the most sensitive limit yet obtained on hard X-ray emission from the cluster.
Aims. We investigate the X-ray emission in the 20–40 keV band expected from the flaring low-mass stellar population in Cygnus OB2.
We discuss whether such emission needs to be considered in the interpretation of existing and future X-ray observations of the region,
and whether such observations might provide insight into the high-energy processes on low-mass pre-main sequence stars.
Methods. The total hard X-ray flux from low-mass stars is estimated by assuming the observed soft X-ray emission stems from a
superposition of flares. We further assume the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar
flares by Isola and co-workers.
Results. We estimate the low-mass stellar hard X-ray flux in the 20–40 keV band to lie in the range ∼2 × 1031−6 × 1032 erg s−1 and
discuss some potential biases that might affect this result.
Conclusions. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. If
this emission could be detected, it would provide insight into the hard X-ray production of large flares on pre-main sequence stars.
We highlight the penetrating power of hard X-rays from low-mass stellar populations as a possible pointer to our Galaxy’s hidden
star-forming clusters and super-clusters using more sensitive observations from future missions.
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1. Introduction

Motivated by the detection of nonthermal radio emission from
early-type stars in the nearby massive Cygnus OB2 associa-
tion (d = 1.7 kpc, Massey & Thompson 1991), De Becker
et al. (2007) have recently used an extensive set of obser-
vations obtained by the International Gamma-Ray Laboratory
(INTEGRAL) IBIS instrument to search for hard X-ray emission
from some of the more prominent radio sources. The nonthermal
radio emission from these stars is thought to arise from a rel-
ativistic population of electrons accelerated by diffusive shock
acceleration in their interacting stellar winds (e.g. Pittard &
Dougherty 2006). De Becker et al. (2007) note that hard X-rays
might plausibly be produced by inverse Compton scattering of
photospheric UV photons.

One other potential source of hard X-rays in Cygnus OB2 are
the myriad flares thought to arise from magnetic reconnection
events that characterize and sustain the coronae of the low-mass
stellar population (see, e.g., Albacete Colombo et al. 2007a;
Caramazza et al. 2007). The flare paradigm developed from the
solar perspective posits that hard X-rays can arise from the im-
pact on dense photospheric gas of electrons accelerated to mildly
relativistic energies (the “thick-target model”, e.g. Brown 1971;
Hudson 1972; Lin & Hudson 1976). Tentative direct evidence

for such nonthermal hard X-rays up to 200 keV has recently been
found from Swift observations of a large flare on the RS CVn-
like interacting binary II Peg Osten et al. (2007). Large stellar
flares observed on the young single star AB Dor and the active
binaries Algol and UX Ari by the BeppoSAX mission (Boella
et al. 1997) in the 0.1–100 keV range revealed evidence of sim-
ilarly energetic emission, though it was not possible to ascertain
whether this was of thermal or nonthermal origin (Maggio et al.
2000; Favata & Schmitt 1999; Franciosini et al. 2001).

While any single flare event on a low-mass star is a trifling
insignificance in comparison with the effusive vigor of its high-
mass brethren, the comparative multitude of the former popula-
tion in Cygnus OB2 might render a palpable combined effect. An
estimate of this effect is motivated from different standpoints.

Firstly, the search for hard X-rays from early-type stars by
De Becker et al. (2007) resulted in only upper limits; an estimate
of the flux limit at which low-mass stars might be detected could
be important for understanding the origin of any hard X-rays de-
tected in deeper observations by INTEGRAL or future missions.

Secondly, the large concentration of low-mass stars in the
Cygnus OB2 region might also provide insight into the high-
energy nature of stellar flares that is difficult to attain from ob-
servations of nearby single stars that rarely exhibit large events.
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Isola et al. (2007) have recently shown that a well-defined
power-law relationship between soft and hard X-rays seen in
solar flares matches the 20–40 keV flux observed during the
AB Dor, Algol and UX Ari flares, but tends to overpredict
the, presumed nonthermal, 60–80 keV flux. Alexander & Daou
(2007) find evidence for a saturation in nonthermal X-ray flux
above 20 keV for solar flares with increasing soft X-ray lumi-
nosity, and it is conceivable that this is related to the deficit in
observed nonthermal stellar X-rays. Detection of, or limits on,
the hard X-ray flux from the low-mass Cygnus OB2 population
could provide constraints for extrapolating solar flare models to
much more active pre-main sequence stars.

Thirdly, the hard X-ray environment of young protostellar
systems is potentially relevant for the ionization of circumstel-
lar material and protoplanetary disks (e.g. Glassgold et al. 1997;
Aikawa & Herbst 1999; Fromang et al. 2002; Matsumura &
Pudritz 2003). We currently have no information on the inten-
sity of this radiation environment.

We outline in Sect. 2 below a calculation of the hard X-ray
flux from the Cygnus OB2 low-mass population under the as-
sumption that the observed soft X-rays from these stars is dom-
inated by a superposition of flaring events. We then discuss in
Sect. 3 the uncertainties in this estimate, the degree to which it
likely overestimates the true level of hard X-ray emission, and
the implications of the results.

2. Estimating the low-mass stellar hard X-ray flux

There are three main components to our hard X-ray flux es-
timate: the Cygnus OB2 initial mass function (IMF) and total
stellar mass; the relationship between stellar mass and observed
soft X-ray luminosity for the low-mass population; and the rela-
tionship between the soft and hard X-ray luminosities. In order
to gain a better perspective on the uncertainties involved in our
estimate, we use three different approaches that employ these
ingredients in slightly different ways.

We adopt the IMF derived by Knödlseder (2000) based
on 2MASS photometry. That study noted the power-law in-
dex found, Γ = −1.6 ± 0.1, is compatible with that of Kroupa
et al. (1993) for the solar neighborhood, but is significantly
steeper than found from spectroscopy of the central region of
Cygnus OB2 by Massey & Thompson (1991). We therefore also
investigate below the effect of a different power-law slope, and
in particular that found for the Orion Nebula Cluster (ONC,
Γ = −1.2) by Muench et al. (2002). We consider hard X-rays
from stars in the mass range 0.3−2 M�; the upper limit cor-
responds to the approximate boundary between low-mass pre-
main sequence stars with outer convection zones and intermedi-
ate mass stars that should have radiative envelopes; the lower
mass limit corresponds to the limit of the Knödlseder (2000)
study – essentially our limit of current knowledge. For stars with
mass <∼0.3 M�, X-ray luminosities of T Tauri stars are observed
to decline much more rapidly with decreasing mass than for
higher mass stars (e.g. Preibisch et al. 2005; Albacete Colombo
et al. 2007b), rendering their contribution to the total X-ray lu-
minosity less significant, regardless of whether the IMF flattens
toward lower masses or not (e.g. Scalo 1986; Kroupa et al. 1993;
Kroupa 2001; Chabrier 2003). Nevertheless, we also investigate
the effects of this lower mass cut-off in our calculations below.

Albacete Colombo et al. (2007a) found the X-ray luminosi-
ties of low-mass stars in Cygnus OB2 to be essentially identical
to those in the ONC (Preibisch et al. 2005). We therefore adopt
the relation between stellar mass, M, and X-ray luminosity, LX,

from the ONC study. In order to examine the effects on our cal-
culation of the significant scatter in observed LX vs. M, we also
calculate the expected hard X-ray flux using the observed ONC
stellar sample renormalized to the Cygnus OB2 low-mass con-
tent (see Sect. 2.3).

The relationship between the soft and hard X-ray luminosi-
ties was derived using the extrapolation of the relation found
for solar flares by Isola et al. (2007), F20−40 = 9.9 × 106F1.37

G ,
where F20−40 is the 20–40 keV flux density in ph cm−2 keV−1 s−1

and FG is the Geostationary Operational Environment Satellite
(GOES) 1.6–12.4 keV flux in unit of W m−2. In order to con-
vert this relation to the stellar case, we assumed that the ob-
served soft X-ray luminosities of the Cygnus OB2 low-mass pre-
main sequence population could be explained by a superposition
of flares. This assumption is based on evidence that the solar
corona is largely characterized by a power-law flare distribution
in total energy, E, and frequency, N, dN/dE ∝ E−α (e.g. Lin
et al. 1984; Krucker & Benz 1998; Hudson 1991), and on stud-
ies of EUV and X-ray flares and photon arrival times for active
stars that suggest a similar flare distribution with α ∼ 2 (Audard
et al. 2000; Kashyap et al. 2002; Güdel et al. 2003). The high-
energy tails of flares detected in Chandra studies of the ONC
and Cygnus OB2 are also well-approximated by a power-law
frequency distribution with α = 2.2 ± 0.2 (ONC, Caramazza
et al. 2007), α = 2.1 ± 0.1 (Cygnus OB2, Albacete Colombo
et al. 2007a). In the following we outline our estimates, and
then discuss the uncertainties of this approach. An alternative
approach to estimate the nonthermal emission is proposed in
(Güdel 2009).

2.1. Hard-soft X-ray luminosity relation for young low-mass
stars

The relation from Isola et al. (2007) relates the flux in the 1.6–
12.4 keV band to the flux density in the 20–40 keV band. In order
to obtain a relation between the peak luminosity of flares in the
two bands, we first converted the GOES flux from W m−2 into
erg s−1 luminosity, and the flux density in the hard band, given
in unit of ph cm−2 keV−1 s−1, into erg s−1 luminosity, assuming
a photon energy of 20 keV and multiplying for the band range.
We also converted the 1.6–12.4 keV luminosity into luminosity
in the 0.5–8.0 keV band: the conversion factor (Kconv = 0.34)
was evaluated considering a Raymond Smith model with kT =
1.35 keV and log(NH) = 22.25 cm−2 (Albacete Colombo et al.
2007b). We then obtain the following relation:

L f l(20−40) = 1.8 × 1028 ·
(
1.2 × 10−31

)β ·
(
L f l(0.5−8.0)

)β
erg s−1 (1)

where β = 1.37 ± 0.07 is the index found by Isola et al. (2007).
Note that the factor in the previous relation varies strongly due
to the uncertainty of β.

This relation can be converted in a relation between the total
energy output of flares in the two spectral bands, considering that
E = L f l · τ. Given the power-law distribution of flare energies in
the 0.5–8.0 keV band, we conclude that the 20–40 keV band flare
energies are also distributed as a power-law. The index of this
power-law, γ, is a function of α and β: γ = (α + β − 1)/β, where
2.0 ≤ α ≤ 2.4 (Caramazza et al. 2007) and 1.30 ≤ β ≤ 1.44
(Isola et al. 2007). If we impose the condition that γ also has a
value greater than 2, i.e. that the 20–40 keV band emission is
due entirely to flares, then the acceptable values for α and β fall
in the ranges 1.31 < β < 1.39 and 2.32 < α < 2.4. Integrating
the distribution of flares between the minimum energy and the
maximum energy, that we can set as infinite, we obtain the
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following relation between stellar luminosity in the 20–40 keV
and 0.5–8.0 keV bands:

L20−40 = A · L0.5−8.0 erg s−1 (2)

where

A =
τ20−40

τ
β
0.5−8.0

(α − 2) · Eβ−1
0.5−8.0 min

α − β − 1
1.8 × 1028 ·

(
3.5 × 10−31

)β
(3)

here, we set τ0.5−8.0 to 10 h (Caramazza et al. 2007), while τ20−40
is scaled using the ratio (0.16) derived from the median dura-
tion of flares in the hard and soft bands calculated by Veronig
et al. (2002) from a sample of solar flares. E0.5−8.0 min was set to
∼2 × 1032 erg that is the median values obtained from a statis-
tical analysis of the ONC lightcurves interpreted assuming the
emission enterely due to flares with a power law distribution
(Caramazza et al. 2007). The energy of flares that contribute to
the star emission in Caramazza et al. (2007) is given in counts.
We converted the counts to energy, assuming a Raymond-Smith
emission with the median values of NH and kT of the ONC sam-
ple (NH = 1.9 × 1021 cm−2 kT = 1.25 keV). Note that, since β is
not too different from 1, the hard X-ray luminosity is relatively
insensitive to change in E0.5−8.0 min or τ0.5−8.0 values: a factor
of 10 change in either of these quantities results in only a factor
of 2 difference in A. Assuming uniform distributions of α and β
in the total intervals given above, we estimate that 90% of the
resulting values for the proportionality factor A lie in the range
A = [1.8 × 10−4, 3.0 × 10−3]. Allowing also for significant un-
certainties in the other parameters (τ20−40/τ0.5−8.0 = [0.08, 0.24],
τ0.5−8.0 = [3, 18] h, E0.5−8.0 min = [2 × 1031, 2 × 1033] erg), the
90% interval for A becomes [1.1 × 10−4, 4.0 × 10−3]. We will
adopt in the following the latter uncertainty range.

2.2. Analytical estimate

Adopting the relation between stellar mass and the X-ray lumi-
nosity found for the Chandra Orion Ultra-deep Project (COUP)
stars in the range 0.3−2 M� (Preibisch et al. 2005),

log (L0.5−8.0) = 30.37 + 1.44 · log (M) (4)

and combining this with Eq. (2), we obtain a relation between
stellar mass and hard X-ray flux. This expression can then be in-
tegrated over the stellar mass distribution for Cygnus OB2. The
IMF found by Knödlseder (2000) follows the standard form

dN
dM
= kMΓ−1 = k · M−2.6 with Γ = −1.6, (5)

and assuming for the present a total mass of Mtot = 5 × 104 M�
(Knödlseder 2000), and maximum and minimum stellar masses
in the cluster of Mmax = 80 M� and Mmin = 0.3 M�, respectively,
the normalization constant is k = 1.5 × 104.

In order to calculate the total hard X-ray luminosity in the
cluster, we transform the IMF into a function of 20–40 keV stel-
lar X-ray luminosity, and integrate between the luminosities cor-
responding to 0.3 and 2.0 M�, obtaining values in the following
range:

LCyg
20−40 = [1.8 × 1031, 6.6 × 1032] erg s−1. (6)

2.3. Scaling the Orion hard X-ray luminosity

We can also make a rough estimate of hard X-ray flux from
Cygnus OB2 by scaling directly the observed X-ray luminos-
ity distribution of the low-mass stars in Orion. This approach
has the advantage that the observed scatter in the COUP sam-
ple is intrinsically included. The IMF of the Orion sample has a
shallower slope than that for Cygnus OB2 of Knödlseder (2000),
with Γ = −1.2 (Muench et al. 2002), and we investigate the in-
fluence of this difference in Sect. 2.4 below.

The total 20–40 keV luminosity for the COUP sample is sim-
ply the sum over all stars of mass Mi in the range 0.3−2 M�,

LCOUP
20−40 = A ·

2∑

Mi=0.3

L0.5−8.0(i) = [8.6 × 1028, 3.1 × 1030] erg s−1,

where the relation between the 20–40 keV and 0.5–8 keV lumi-
nosities is given by Eq. (2). Assuming a similar IMF for both
Orion and Cygnus OB2, the hard X-ray luminosity of the lat-
ter is then simply given by the product of LCOUP

20−40 and the ra-
tio of cluster masses within the 0.3−2 M� mass interval. The
Cygnus OB2 IMF from Eq. (5) yields a total mass in this range
of MCyg

0.3−2 = 3.5 × 104 M�, while the analogous total mass of the
COUP sample is MCOUP

0.3−2 = 175 M�. Even in this case the total
Cygnus OB2 hard X-ray luminosity is therefore

LCyg
20−40 = [1.7 × 1031, 6.3 × 1032] erg s−1.

2.4. Simulating Cygnus OB2 using the Orion sample

In order to account for the different IMF slopes in Cygnus OB2
and Orion (Γ = −1.6 cf. −1.2), we also performed a sim-
ple Monte Carlo simulation of 10 000 stars. The mass range
0.3−2 M� was divided into 10 bins, and within each mass bin
0.5–8.0 keV luminosities were randomly selected from those
observed in the COUP sample. The number of “stars” drawn
in each bin was weighted according to the Cygnus OB2 IMF
from Eq. (5), and the luminosity for each star was scaled to
L20−40 as described earlier. The luminosity of the simulated sam-
ple was then scaled so as to have a total mass equal to that of
Cygnus OB2 for the 0.3−2 M� mass range. In this way, we esti-
mate

LCyg
20−40 = [1.9 × 1031, 6.6 × 1032] erg s−1.

As a verification of the calculation, we recovered a luminosity of
LCOUP

20−40 = [8.9×1028, 3.2×1030] erg s−1 – essentially the same as
that found from direct calculation in Sect. 2.3 – for an IMF with
slope Γ = −1.2 scaled to the appropriate COUP total mass.

3. Discussion

The range of 20–40 keV fluxes we have evaluated above can
be compared with the the 3σ 20–60 keV flux upper limit of
6.1 × 10−12 erg cm2 s−1 obtained from 2.12 Ms of INTEGRAL
IBIS-ISGRI observations by De Becker et al. (2007) for the
unidentified γ-ray source 3EG J20033+4188 that lies in the close
vicinity of Cygnus OB21. Adopting a distance of 1.7 kpc for
Cygnus OB2 (e.g. Massey & Thompson 1991), this flux corre-
sponds to a luminosity ∼2 × 1033 erg s−1.

1 The distance between the position of 3EG J20033+4188 and the cen-
ter of Cyg OB2 obtained by (Knödlseder 2000) is 7′.
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The 20–40 keV bandpass considered here is significantly
narrower that the 20–60 keV range cited by De Becker et al.
(2007). Based on the power-law spectrum and slope estimate by
Isola et al. (2007), we expect the corresponding estimate for the
20–60 keV range to be a factor 1.8 higher. Moreover, the up-
per limit of the fluxes for the undetected stars was estimated by
De Becker et al. (2007) within a PSF of 12′. Using the King pro-
file describing the projected spatial distribution of starlight from
the association found by Knödlseder (2000), the ratio between
the flux in the whole association area (radius ∼60′) to that in the
3EG J20033+4188 region is 6.6. Applying these scaling factors,
the total luminosity in the whole region of Cygnus should not be
higher than 7.3 × 1033 erg s−1. While this scaling is somewhat
crude, the range of 20–40 keV fluxes we have evaluated is one
order of magnitude lower than this upper limit. This confirms the
potential importance of hard X-ray emission from the low-mass
stars in stellar clusters.

There are several assumptions that might have led us to over-
estimate the Cygnus OB2 luminosity. First, the total cluster mass
of (4−10) × 104 M� derived by Knödlseder (2000) has been
challenged by Hanson (2003), who estimated the cluster to lie
slightly closer at 1.4 kpc and suggested a total cluster mass
closer to 104 M�. Nevertheless, based on a study of A-stars in
the Cygnus OB2 field, Drew et al. (2008) find that “a total mass
of 30 000−40 000 M� would not be surprising”. Our adopted
5 × 104 M� is then perhaps up to 1.2–1.7 times too high.

We have also assumed that all of the observed stellar X-ray
flux is due to continuous flaring. Some fraction of the observed
luminosity of these stars might also be attributed to a quiescent
component.

One additional factor of uncertainty is related to the dura-
tion of flares. Indeed, the hard X-rays seen in solar flares that
are usually associated with the flare impulsive phase generally
decay on a more rapid timescale than soft X-rays (e.g. Dennis &
Zarro 1993; Benz 2008, and references therein). We considered a
ratio between the duration of flares in hard and soft band derived
from solar measures of flare duration (Veronig et al. 2002).The
case of large stellar flares is not so clear, however. The decay of
the 14–40 keV flux in the large II Peg flare observed by Swift
was not obviously shorter than that for the soft X-rays. It should
also be noted that in large stellar flares there will be a larger
thermal contribution in the 20–40 keV range than in much less
energetic solar flares, in alignment with the general correlation
of increasing plasma temperature with flare total energy (e.g.
Feldman et al. 1995). Moreover, also the minimum energy of the
distribution of flares is uncertain, we set it to the median value
obtained from the analysis of the COUP low mass samples. In
our estimation we considered that it can be uncertain of two or-
ders of magnitude, that implies a variation of a factor ∼5 in the
resulting total energy: note, however, that Güdel (2009) found a
value even lower (few times 1030).

Our assumptions could lead to an overestimation of the real
value of the total luminosity, but a value of ∼6× 1032 erg s−1, an
order of magnitude below the De Becker et al. (2007) flux up-
per limit, would render the low-mass population of importance
in searches for emission from specific suspected sources of hard
X-rays, such as the unidentified γ-ray source 3EG 2033+4118,
the unidentified TeV source TeV J2032+4130, and massive
colliding-wind binaries.

The possibility of detecting hard X-ray emission from nearby
clustered low-mass pre-main sequence populations provides a
promising means of investigating high-energy processes on stars
that are generally too distant to study in detail individually. Of
particular interest is the relation between soft and hard X-ray

emission of solar flares (e.g. Isola et al. 2007; Battaglia et al.
2005), and how the underlying physical basis can be extrapo-
lated to the other regimes, such as the pre-main sequence stel-
lar case where hard X-rays from flares can be important agents
of protoplanetary disk ionisation (e.g. Igea & Glassgold 1999;
Glassgold et al. 2004).

Our discussion assumes that all stars will be “observed” in
the 20–40 keV range, i.e., that X-rays will penetrate both the
circumstellar and ambient cluster and line-of-sight extinction.
Cygnus OB2 is located behind the Great Cygnus Rift that leads
to extinction of up to (and possibly beyond) AV ∼ 10 (e.g.
Massey & Thompson 1991). Extinction of 10m corresponds to
a neutral hydrogen column density NH ∼ 1.5 × 1022 cm−2. The
optical depth for such a column for 20–40 keV X-rays is com-
pletely negligible; the Compton ionization and scattering cross-
section ofσT ∼ 6.65×10−25 cm2 renders the interstellar medium
optically thin to hard X-rays for columns up to NH ∼ 1024 cm−2.
Except perhaps in rare cases of stars obscured by very dense cir-
cumstellar disk mid-plane gas and dust, the assumption that we
will see the whole cluster in hard X-rays should be valid.

Finally, this consideration raises the possibility of using the
penetrating power of hard X-rays as a pointer to our Galaxy’s
hidden superclusters. Hanson (2003) noted that extrapolation of
the locally-derived Galactic cluster luminosity function indicates
that our Galaxy hosts “tens to perhaps a hundred” massive clus-
ters with total mass ∼104 M�. These clusters are likely hidden
behind many magnitudes of extinction and will not be easy to lo-
cate. Hard X-rays can penetrate such extinction, and the arrival
of missions in the next decade able to provide relatively pre-
cise imaging with much greater sensitivity in the ∼10−100 keV
bandpass, such as NuSTAR (Harrison et al. 2005) and Symbol-X
(Pareschi & Ferrando 2005), could provide an assay of this hith-
erto much overlooked population of our Galaxy. In this context,
Cygnus OB2 represents a potential “Rosetta Stone”, offering a
nearby super-cluster example that can be well-characterized us-
ing multi-wavelength techniques that will not be applicable to
more distant and extinguished clusters.
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