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ABSTRACT
We have developed a method based on wavelet transforms (WTs) to detect sources in astronomical

images obtained with photon-counting detectors, such as X-ray images. The WT is a multiscale trans-
form that is suitable for detection and analysis of interesting image features (sources) spanning a range of
sizes. This property of the WT is particularly well suited to the case in which the point-spread function
is strongly varying across the image, and it is also e†ective in the detection of extended sources. The
method allows one to measure source count rates, sizes, and ellipticity, with their errors. Care has been
taken in the assessment of thresholds for detection, in the WT space, at any desired conÐdence level,
through a detailed semianalytical study of the statistical properties of noise in wavelet-transformed
images. The method includes the use of exposure maps to handle sharp background gradients produced
by a nonuniform exposure across the detector, which would otherwise yield many spurious detections.
The same method is applied to evaluate upper limits to the count rate of undetected objects in the Ðeld
of view, allowing a sensitivity map for each observation to be constructed.
Subject headings : methods : data analysis È methods : statistical È techniques : image processing

1. INTRODUCTION

In most astronomical images a large fraction of sources is
near the detection limit. A careful statistical treatment is
then needed to determine their existence and their proper-
ties, such as accurate position, Ñux, size, etc. Furthermore,
the reliability of the source detection method has implica-
tions for the assessment of source statistical properties, such
as their luminosity function. It is therefore important to
have a detection method that is both efficient for detecting
sources in the Ðeld of view and reliable in the sense that it
yields only a predeÐned number of expected spurious detec-
tions.

A case of particular importance for X-ray, c-ray, EUV,
and some UV detectors is the photon-counting regime,
where the information for most sources has to be extracted
from a handful of photons, and the photon statistics per
image pixel is signiÐcantly di†erent from Gaussian. In this
case, methods for source detection commonly used for
optical images are no longer e†ective. Moreover, many
kinds of astronomical objects are known, and some of them
are observable as spatially extended sources. Examples are
supernova remnants in Local Group galaxies (including the
Milky Way), galaxies themselves, and clusters of galaxies ; in
the two latter cases the emission may be superposed on that
of other point sources. An ideal detection algorithm should
be able to recognize these cases and deal properly with
them.

Among all photon-counting detectors, present-day X-ray
detectors (such as the PSPC and HRI on ROSAT , and the
forthcoming EPIC camera on XMM) have only limited and
nonuniform spatial resolution, which of course makes the
analysis of X-ray images more complex. X-ray images with
signiÐcantly higher resolution will be obtained with the
ACIS and HRC detectors on the Advanced X-Ray Astro-
physics Facility (AXAF), but the detection problems will be
similar, albeit dealing with smaller angular sizes. The instru-
ment that has already collected the largest amount of
spatial X-ray data is the PSPC on board ROSAT : its point-

spread function (PSF) is bell shaped with an FWHM as
wide as approximately 20A on axis and becoming gradually
degraded (i.e., wider) farther from the optical axis, reaching
a width of a few arcminutes at the image edge et(Hasinger
al. In spite of this degradation, PSPC images still1993).
contain a considerable amount of useful information at o†-
axis angles in the range 20@È40@, where neither vignetting
nor the PSF widening are too severe. However, most
current source detection algorithms for the PSPC do not
efficiently detect sources so far o†-axis ; once again, there-
fore, a more versatile tool for X-ray image analysis is desir-
able.

In this paper we explore the capabilities of a relatively
new method of source detection, based on wavelet trans-
forms (WTs). For an introduction to WTs, see, e.g.,

or In general, the WT is aDaubechies (1992) Kaiser (1994).
multiscale transform providing a representation of the data
that allows easy extraction of both the position and the
shape of features, in an image or in a light curve. This is
unlike classical Fourier analysis, which provides only shape
information, and also unlike simple object-Ðnding methods
looking for peaks (maxima) in the original data, which
provide only positional information. Analogous explora-
tion of a wavelet-based X-ray source detection has been
already presented by Burg, & Giacconi andRosati, (1994)

et al. a similar technique (““ matchedGrebenev (1995) ;
Ðlter ÏÏ) has been employed by et al. In theVikhlinin (1995).
present work, many improvements have been brought to
this technique, which include a better quantiÐed statistics of
noise in WT images, the use of exposure maps to handle
spatial exposure nonuniformities, the computation of upper
limits using the WT, and a careful treatment of errors on
Ñux and size of detected sources, among other things.

Although the WT has wider application in the temporal
and spectral domains, we will limit ourselves to character-
izing the spatial properties of each detected object simply by
deriving a single number as a measure of its size. A compan-
ion paper et al. hereafter Paper II) presents(Damiani 1997,
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extensive tests of the performance of our algorithm for the
case of ROSAT PSPC X-ray images.

In we outline the basic characteristics of our method.° 2
Then, in we study the statistical properties of the WT,° 3
which allow us to establish conÐdence levels for the exis-
tence of detected sources. Later we present a complete(° 4),
description of our algorithm, for both detecting sources and
evaluating upper limits on a list of positions. is aSection 5
summary of the results obtained.

2. PROPERTIES OF THE METHOD

The WT of a data set allows the selection of particular
features of interest in the data. Various kinds of WTs exist,
depending on what data properties are being investigated,
and they rely on di†erent ““ generating wavelets ÏÏ ; common
to all types of generating wavelets is their dependence on
position and length scale, and also their having zero mean
and Ðnite norm. In the case of images in two or more
dimensions, there may be as many independent scale
parameters as the number of dimensions.

The WT of a two-dimensional image f (x, y) is deÐned as

w(x, y, a)\
PP

g
Ax [ x@

a
,
y [ y@

a
B

f (x@, y@)dx@ dy@ , (1)

where g(x/a, y/a) is the generating wavelet, x and y are the
pixel coordinates, and a is the scale parameter. In our case,
f (x, y) describes the number of photons recorded in each
pixel of the image ; we are interested in detecting discrete
sources of emission, having in most cases a nearly bell-
shaped spatial proÐle ; therefore, we choose for g a function
having a similar shape (if we had interest to Ðnd a localized
periodicity in the data, we would have chosen an oscillating
g, and so on). An useful property of every function g is that
it is a localized function, namely, it is appreciably di†erent
from zero only in a Ðnite neighborhood of the position (x, y)
where it is evaluated. Therefore, the value of w(x, y, a)
deÐned in will be a†ected only by the values ofequation (1)
f (x, y) in positions within a few times the scale parameter a.
The evaluation of w(x, y, a) at di†erent scales a permits the
study of structures in the data f (x, y) of various spatial sizes.
The choice of a unique scale parameter for both x and y
axes arises from the assumption that most sources are iso-
tropic, and it may be relaxed to study anisotropic sources
(see ° 4.7).

Throughout this work, we use the two-dimensional
““Mexican hat ÏÏ wavelet (see Fig. 1) :

g
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a

,
y
a
B

4 g
Ar
a
B

\
A
2 [ r2

a2
B
e~r2@2a2 (r2\ x2] y2) , (2)

which has all properties required for a generating wavelet
and is signiÐcantly di†erent from zero only for r less than a
few times a (e.g., o g oº 10~4 for r ¹ 5a). Our deÐnition has a
slightly di†erent normalization (by a factor a) from that
given by other authors (e.g., et al. but it isRosati 1994),
more convenient because g is dimensionless.

This chosen g ensures that the WT of a function f (x,
(a tilted plane) is zero. Therefore, they) \ c1] c2 x] c3 y

WT will be zero for both a constant or uniform gradient
local background (within D5a). While the WT is not sensi-
tive to gradients in the data with this choice of g, it is
sensitive to second derivatives of f (x, y), e.g., local maxima
or minima, or even ““ step functions,ÏÏ making it suitable for
detecting sources in an image [local maxima of f (x, y)].

FIG. 1.ÈMexican hatÈgenerating wavelet g(r/a)

This is clear if we note that [integrating by parts, and pro-
vided that the function f (x, y) goes to zero at inÐnity]

w(x, y, a) \
PP A

2 [ r2
a2
B
e~r2@2a2f (x@, y@)dx@dy@

\ [a2
PP

e~r2@2a2
A L2f
Lx@2 ] L2f

Ly@2
B
dx@dy@ , (3)

where r2\ (x [ x@)2] (y [ y@)2.
Unfortunately, second derivatives can arise from instru-

mental artifacts, for example, because of shadows cast by
the entrance window supporting structures or ““ ribs ÏÏ in
proportional counters, or interchip gaps in CCD-based
detectors. We deal with this di†erently in ° 4.2.

Let us consider a source with total counts and withNsrca Gaussian shape of width namely, s(r) \psrc,its WT is (seeNsrc/2npsrc2 e~r2@2psrc2 ; Fig. 2) :

w(r, a)\ Nsrc
(1 ] psrc2 /a2)2

A
2 [ r2

a2] psrc2
B
e~r2@2(a2`psrc2) , (4)

which, as a function of r, has the same form as the gener-
ating wavelet g(r/a), provided that a is replaced by the quad-
rature sum The peak of this function occurs(a2] psrc2 )1@2.
for r \ 0, where the WT amplitude depends on a as

wpeak(a) \ 2Nsrc
(1 ] psrc2 /a2)2 . (5)

Such dependence allows us to derive the width of apsrcGaussian source once its WT has been computed at several
scales a. It is useful to understand the asymptotic behavior
of [henceforth denoted simply as w(a)] as the ratiowpeak(a)

assumes very small or very large values. If the WT ispsrc/acomputed at a scale a much larger than the source size
then the source shape is ““ seen ÏÏ as a d-function(psrc/a ] 0),

by the transform; therefore, for a Ðxed source width psrc,w(a) approaches a Ðnite value as a ] O. If thew(a)\ 2Nsrc
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FIG. 2.ÈTop : Image of a Gaussian source over a Ñat background, with
Poisson noise. The Gaussian width is pixels. Bottom : Waveletpsrc \ 2
transform (WT) of the image at the top, at scale The negativea \ (2)1@2psrc.annulus around the main peak is evident. In both panels the image border
is set to zero to provide a reference level, and comparison between top and
bottom images shows that the WT of a Ñat background is zero on average.

source is much larger than the region where the generating
wavelet is signiÐcantly di†erent from zero then(psrc/a ] O),
the transform sees the source as an almost Ñat background,
and w(a) tends to zero as This property of the WT(psrc/a)~4.
turns out to be very useful if the studied image contains a
superposition of sources of di†erent sizes (e.g., point and
extended sources), since the transform w(a) for scales com-
parable to the size of the smallest sources will be a†ected
very little by the underlying larger source, which is seen as
only an enhanced background emission.

If we consider the function y(a) 4 w(a)/a, then we see that
this tends to zero for both a ] 0 and a ] O (for a Ðxed psrc),as a3 and a~1, respectively (see This function hasFig. 3).
therefore a maximum for a Ðnite value of a, namely,

amax\ J3 psrc , (6)

allowing us to measure the source width The existencepsrc.of such a maximum of y(a) explains why we stated that the
WT at a given scale is particularly sensitive to structures of
about that size. The value of the transform for a \ amaxallows an estimate of source counts, since w(amax)\(9/8)Nsrc.Sources in the image f (x, y) are therefore deÐned as local
maxima in the function w(x, y, a), at a given scale, which

FIG. 3.ÈProÐle of the function y(a) \ w(a)/a vs. log a for a Gaussian
source.

cannot be due to background Ñuctuations with a certain
assigned probability level.

3. STATISTICAL PROPERTIES OF NOISE IN

WAVELET-CONVOLVED IMAGES

In order to establish the statistical signiÐcance of a candi-
date source detection, we need to know the statistical
properties of the WT and, in particular, of the probability
distribution P(w) of the WT values due purely to the Ñuc-
tuations of a uniform background. While the mean value of
P(w) is necessarily zero since g(r/a) has zero mean, the dis-
tribution variance increases with the image background
intensity.

We derive in detail in the probability dis-Appendix A
tribution of WT values resulting from wavelet-transforming
a spatially uniform photon background with Poisson noise.
Such a distribution P(w) is not easy to compute. Other
authors (e.g., et al. and references therein) makeStarck 1996
use of an approximate treatment of the statistics of the WT,
based on the transformation of the analyzed image into
another one with unit variance. This is not suitable when
there are only a few photons per image pixel.

The probability distribution P(w) depends on both the
background density b and the wavelet scale a, but only
through the dimensionless combination q 4 b ] a2
(number of photons per square scale, or ““ photon density ÏÏ),
as is easy to understand, since the generating wavelet g only
depends on the ratio r/a. Correspondingly, we denote as

the probability distribution of the WT noise. In theP
q
(w)

derivation of the distributions we willP
q
(w) (Appendix A)

also make use of the number n of photons falling within a
radius 5a, related to q by n \ 25nq. The probability dis-
tributions for n \ 4, 16, 256, and 4096 (q \ 0.051,P

n
(w)

0.204, 3.26, and 52.1, respectively) are shown in AsFigure 4.
may be seen from this Ðgure, is highly asymmetricalP

n
(w)

for low n (““ discrete photon limit ÏÏ), while it approaches a
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FIG. 4.ÈProbability distribution (solid line) for n background photons within 25na2, for n \ 4, 16, 256, and 4096. Dotted lines show GaussianP
n
(w)

distributions with variance p \ 2nq, which approach (where n \ 25nq) for large n values.P
n
(w)

Gaussian distribution (also shown in as soon as nFig. 4)
becomes at least a few hundreds (““ continuous limit ÏÏ). The
transition between the two limits is very smooth : to be
safely in the continuous limit requires that n is as large as a
few] 104.

The higher quantiles of the distributions deÐneP
q
(w)

thresholds for acceptance of a measured WT amplitudew0as not being due to background Ñuctuations at awº w0certain conÐdence level. On the basis of the distributions
derived through Monte Carlo simulationsP

q
(w) (Appendix
we have looked for a convenient parameterization of theA),

threshold for Ñuctuations of w at a probability levelw0corresponding to kp of a Gaussian distribution, expressed
as a function of k and q, To do this, we havew0\ w0(k, q).
noted that the di†erence between the values of yielded byw0our simulations at each k (\number of Gaussian p) and the
corresponding continuous-limit value iskp

w
\ k(2nq)1@2

nearly a constant, independent of q, say *w(k), for
[1 ¹ log q ¹ 4 (a range comprising the vast majority of
values we have found in present-day X-ray images) ; then,
we have found empirically that *w(k) is very well approx-
imated by a quadratic polynomial in k, *w(k)\ c1] c2 k

(with and] c3 k2 c1\ [0.2336, c2\ 0.0354, c3\ 0.1830),
in the range of k that could be explored with our simula-
tions, namely, 0.5 ¹ k ¹ 5.5. Therefore, we approximate

w0(k, q) \ kJ2nq ] (c1] c2 k ] c3 k2) , (7)

shown as dotted lines in which is seen to repro-Figure 5,
duce the simulation results ( Ðlled circles) quite well. This
approximation may also be used to estimate the threshold

at still higher k by extrapolation, which, however, is notw0essential for source detection purposes, since usually a
threshold between 3È5 p is sufficient to yield very few spu-
rious detections. The formula given in predictsequation (7)
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FIG. 5.ÈDetection thresholds [quantiles of for k in thew0(k, q) P
q
(w)],

range 0.5È5.5 ; kp is the signiÐcance threshold, and q \ b ] a2, where b is
the local background density. Filled circles indicate the results of Monte
Carlo simulations, while dotted curves are the analytic approximations to
the simulation data discussed in the text. Each curve refers to a di†erent
value of k, indicated on the right-hand side of the Ðgure. For q º 300, the
dotted curves are close to straight lines, implying that is close to aP

q
(w)

Gaussian.

correctly that for Ðxed k the probability levels approach
those of a Gaussian distribution for increasing q, i.e., in the
continuous limit. Finally, for a Ðxed q, and assuming that it
holds for all k, may be inverted to yield theequation (7)
““ signiÐcance level ÏÏ k as a function of and q, i.e., thew0conÐdence level in terms of Gaussian p values that the given
local excess (detection) can be generated by a random back-
ground Ñuctuation.

4. THE ALGORITHM

We now describe the steps that our algorithm goes
through to produce a Ðnal list of detected sources (Fig. 6).
After having computed the exposure map for the given
observation (step 1), the reference background map is com-
puted by a suitable smoothing of the image (step 2). Then, a
local median Ðlter is applied to recompute the background
at every scale of a set (step 3), to minimize the e†ect ofa

kpoint sources on the background determination. The WT
w(x, y, a) of the image f (x, y) is then computed on a grid of
positions and for each scale (step 4). Spatial(x

i
, y

j
) a

kmaxima (peaks) of are selected if their heightsw(x
i
, y

j
, a

k
)

are above the expected background at a chosen signiÐcance
level (step 5). Problems arise near underexposed regions in
the studied images (such as the PSPC ““ ribs ÏÏ), since the
apparent sharp background gradient they generate can be
mistakenly detected as a source by the wavelet method. To
solve this problem we use appropriate exposure maps
(° 4.2).

For each scale a, groups of detected sources lying closer
than a minimum distance are merged into a single source.
After having built a list of sources detected at all scales a, a
cross-identiÐcation of sources detected at consecutive scales
is made, so that a) may be evaluated as a functionw(x0, y0,of a for a given source lying at at least for those(x0, y0),

FIG. 6.ÈBlock diagram of the algorithm

scales a where the source is detected. This allows us to
derive the intensity and extent of the source (step 6).

Having determined the scale yielding the maximumamaxsigniÐcance for a given detection, we reÐne the spatial grid
where we search the maximum of w(x, y, to derive aamax),more accurate position (step 7). Since source positions may
have slightly changed after this best-position step, we repeat
the source merging and cross-identiÐcation steps on the
new source positions. At the improved positions, source
parameters are more accurately derived (step 8).

At this stage, we have an almost Ðnal list of detections.
However, we have found that, in some (rare) cases, a weak
source is not detected when another stronger source lies
nearby (but the two are still clearly resolved by eye), while
comparably weak sources are invariably detected if they are
isolated ; the reason for this is that the e†ect of strong
sources on the computation of the local background level is
difficult to screen out completely ; therefore, the local detec-
tion threshold is raised with respect to its true value,
causing the nondetection of weak sources. Since all strong
sources are detected at this stage, we now correct the back-
ground maps eliminating their e†ect (by interpolation over
their positions) and iterate a second time the whole pro-
cedure described above with the improved background
(step 9). The background map used in the second iteration is
therefore more like the ““ reference map ÏÏ used by existing
““ map-detect ÏÏ methods (see et al.Harnden 1984 ;

et al. while the Ðrst iteration makes useZimmermann 1993),
of a reference background more like a ““ local-detect ÏÏ
method. One can iterate further times in the same way, until
no more sources are detected.

Eventually, the algorithm produces a list of all sources in
the input image detected above the chosen signiÐcance level
(step 10). For each source we are able to estimate its posi-
tion, count rate, and size, with their errors. The accurate
evaluation of errors on these quantities is not straightfor-
ward and is discussed in Following a procedure° 4.5.
entirely analogous to source detection, we estimate also



No. 1, 1997 WAVELET TRANSFORMÈBASED SOURCE DETECTION. I. 355

upper limits to the count rate of undetected objects in the
Ðeld of view. Finally, we apply a nonisotropic WT to
extended sources (i.e., larger than the detector PSF), to
derive their ellipticity and position angle.

We describe in detail all steps outlined above in the fol-
lowing subsections.

4.1. Computation of Background Maps
A necessary preliminary step to source detection is the

evaluation of the reference background, which deÐnes
detection thresholds. This has to be computed locally,
rather than as a global value in the image, since it may vary
signiÐcantly across the image, both because of the detector
vignetting and obscuring structures and, more importantly,
because of real variations of the sky background (extended
sources, cosmic background gradients). The adoption of a
uniform sky background value would lead to the detection
of false sources where the local background is higher than
the average, as preliminary simulations conÐrm and(Fig. 7),
to the lack of detection of real sources where it is lower than
average.

The local background value should be computed with the
least possible uncertainty and should be ideally una†ected

by point sources. In order to attempt to satisfy both
requirements, we compute the reference background in two
steps : the Ðrst, common to all scales a, is the generation of a
smoothed background map, while in the second step a local
median of this background map is computed, on a region of
size increasing with the scale a at which the WT is being
evaluated, in order to reduce to a minimum the inÑuence of
sources on background evaluation.

The construction of the initial background map is
intended to follow spatial variations of background as
closely as possible (including sources), and with large
enough photon statistics to yield only a small error on the
computed background. Since the smallest length scale on
which sky background gradients can appear is set by the
local PSF width we compute the background map bypPSF,smoothing the original image f (x, y) with a Gaussian whose
width is in each point, i.e., narrower at thepsmo \ 2 pPSFcenter and increasingly wider farther o†-axis. A larger
smoothing Gaussian width is used in those pointspsmowhere there are too few photons entering smoothing, until a
sufficient number of photons are available in an area psmo2
(25 photons in our implementation, which should ensure a
minimum S/N ratio of about 5).

FIG. 7.ÈSimulation of an extended source, namely, much larger than with indicated positions of detections (circles) obtained by assuming for thepPSF,whole image the same average background level. The circle radius is equal to the scale of each detection. All sources but the one indicated by the large circle
are spurious, and they arise because of the bad adopted background estimate.
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Where there are strong gradients in the exposure map,
because of detector artifacts (e.g., PSPC ““ ribs ÏÏ), their width
in the image is independent of the local PSF and so should
not be included in the smoothing. We interpolate over
detector artifacts, assigning relative Gaussian weights to the
smoothed points :

b6 (x0, y0) \
/
S{ f (x, y)e~r2@2psmo2 dxdy

/
S@

e~r2@2psmo2 dxdy
, (8)

where is the smoothed background in the pointb6 (x0, y0) is the width of the smoothing Gauss-(x0, y0), psmo \ 2 pPSFian, and the integration domainr2\ (x[ x0)2] (y [ y0)2 ;
S@ excludes all points in which the exposure time is less than
0.8 times the value outside ribs, a†ected only by vignetting.
Exposure times for each pixel are deduced from properly
computed exposure maps.

The Ðnal background value in a point, as mentioned
above, is obtained at each scale a by computing the median
of the background map over a square region of side l \

centered on the given position. The median4(a2] pPSF2 )1@2
Ðlter screens out the highest values (sources) of the back-
ground map, unless a source is very bright and a†ects a
larger area of the background map. The scale dependence of
the size of the region where the local background median is
computed is in the spirit of the scale-invariant approach
that characterizes WTs. We note also that this procedure
may cause an extended source to be considered as back-
ground at some scales, smaller than its size, while the same
source will be screened out from background evaluation at
larger scales, comparable to the source size, as is appropri-
ate in order to detect it at these latter scales.

We stated that weak sources in the neighborhood of
stronger ones are occasionally not detected by our algo-
rithm. The reason for this lies in an overestimate of the
background, not in the WT method itself, because residual
inÑuence from the strong nearby sources could not be elimi-
nated.

Therefore, a correction is made after the Ðrst-stage detec-
tion process (see °° excluding circles around point4.2È4.5),
sources, including 95% of source photons (radius D2.5 pPSFfor the PSPC), and interpolating with Sourcesequation (8).
found as extended are not interpolated over,(psrc [ 2 pPSF)since they e†ectively behave as background for overlying
point sources. We then iterate the detection procedure after
recomputing the background using the improved back-
ground maps.

It might be argued that a weak, isolated point source, just
above the nominal threshold for the local ““ true ÏÏ back-
ground, may remain undetected in the Ðrst iteration since it
raises the local background estimate, derived as above ; the
same source will also not be detected in the second iter-
ation, where the background is corrected only near detected
sources. We have computed that the e†ect of such a barely
detectable source on our local background evaluation is
typically on the order of 10%, and the source signiÐcance
will thus be lowered by 5% (see below). However, this does
not reduce the algorithm ability to detect weak sources, for
two reasons. First, the same e†ect helps to reject positive
background Ñuctuations as candidate sources. Second, the
algorithmÏs threshold signiÐcance levels for detection have
not been chosen from a priori criteria, but such as to yield
an assigned number of spurious detections on the basis of
the performances of the whole algorithm on simulated data

therefore, the slight inaccuracy in our back-(Paper II) ;
ground evaluation does not reduce the detection efficiency,
since it is compensated by a readjustment of the detection
threshold. Namely, if the background computation method
is self-shielding against detection of spurious Ñuctuations,
the threshold can be lowered with respect to its ““ nominal ÏÏ
value, and weak (real) sources that would otherwise be lost
can thus be detected.

We estimate the e†ect of a weak source on background
median evaluation as follows. The background is computed
as the median over a square region of side l, deÐned above,
of the smoothed background map. This latter is (locally) a
function of the form

b6 (r) \ b ] Nsrc
2nptot2 e~r2@2ptot2 (9)

arising from a local (uniform) background of density b, plus
a point source with counts, at the center of the squareNsrc(r \ 0). After smoothing this source has a width(eq. [8]),

Since the function isptot\ (psmo2 ] pPSF2 )1@2\ (5)1@2 pPSF. b6 (r)
a monotonically decreasing function of r, its median over
the square is simply the value of at a radius R encirclingb6 (r)
half of the square area : nR2\ l2/2. Now we choose a detec-
tion threshold of 4 p, assume to be in the continuous-
limit approximation, and set the detection scale a \

appropriate for marginally detectedamax[\(3)1@2pPSF],sources In this case,(° 4.6). Nsrc \ (89)w(amax)\ (89)w0\
since for a marginally detected source, the(89)4(2nbamax2 )1@2,

wavelet amplitude is equal to the thresholdw(amax) w0 (eq.
We have also therefore,[7]). l \ 4(amax2 ] pPSF2 )1@2 \ 8 pPSF ;

b6median\ b6 (R) \ b
A
1 ] 16

45
S6

n
e~16@5n
JbpPSF2

B

\ b
A
1] 0.177

JbpPSF2
B

. (10)

The quantity is the number of background photons inbpPSF2
the source (core) area and is larger than 1 in most cases. As
an example, in the ROSAT PSPC case, for a source 15@
o†-axis, exposure time of 5 ks, and average background,
one obtains i.e., only a slightly inaccu-b6median\ 1.137] b,
rate background estimate, as mentioned above. We also see
that the background estimate will be worse for a very
narrow PSF, and we discuss in that indeed this willPaper II
be a major difficulty for detecting weak sources using low-
background, very high resolution detectors.

4.2. W avelet Transform Computation and Source Detection
This step is at the heart of our detection method, yet it is

maybe the simplest part of the whole procedure. The WT of
the image is computed at a set of scales a, ranging from
about at image center, to a few times at imagepPSF pPSFedge, in (logarithmic) steps of (2)1@2, in order to cover the
range of apparent sizes of most sources in the image
(including moderately extended sources). Since real features
in the image (apart from ribs) cannot be smaller than the
PSF in size, the WT at a scale a is computed only on image
regions where This choice of the region to bepPSF ¹ a.
analyzed at each scale a, moreover, results in a reduction by
1 order of magnitude of the needed computing time, with
respect to full-image analysis. The largest scale used is
about 1/15 of the Ðeld of view radius, since the approx-
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imation of uniform background is often not valid for larger
scales. The spacing between points of the spatial grid where
the WT is evaluated is chosen as a/2, since a grid spacing
much smaller would only oversample the data with no gain
of information. The WT is computed applying directly

We have found this computational method toequation (1).
be more convenient than computing the convolutions using
fast Fourier transforms (FFTs), because the function g(r/a)
is localized and symmetric and because the analyzed region
radius and grid spacing change with scale a.

Both the image edges and detector artifacts cause the
appearance of spurious ripples in the WT, which should be
corrected for before source detection. The most important
di†erence between image edge and artifacts is that exposure
time drops to exactly zero beyond the edge, while it usually
does not below artifacts ; the obscuration due to artifacts is
not total partly because of the telescope motion during the
observation (““ wobbling ÏÏ) and also because they intrinsi-
cally turn out not to block all incident photons, even in the
absence of telescope wobbling. This causes intense sources
to appear even below artifacts, and simply ignoring image
regions obscured by ribs would therefore waste useful data
(e.g., about 10% of a PSPC image) ; details on how we deal
with partially obscured sources are presented in Appendix
B.

A correction is easily applied near the image edge. The
edge is sharp compared to the local PSF and therefore
behaves like a step function (in the radial direction),

fstep(r)\
G1 ,
0 ,

r ¹ redge ,
r [ redge

(11)

(r is a radial coordinate and the edge occurs at r \ redge),whose WT, in the limit isa > redge,

wstep(r [ redge, a) \ [J2na(r [ redge)e~(r~redge)2@2a2 . (12)

This is positive for meaning that a positive rippler ¹ redge,in the WT appears inward of the edge over a length scale of
order a, i.e., in zones where we look for sources. If the
background at the edge is b, then the WT ripple is bwstep(ra). We therefore subtract this term from the pre-[ redge,viously computed WT of the image at each scale a, prevent-
ing the formation of WT peaks that would lead to detection
of many spurious sources along edges.

Analogously, the WT of a (idealized) rectangular rib is the
sum of two terms similar to with two ripplesequation (12),
along the rib border. As simulations show clearly (Paper II),
a large number of spurious sources appear due to this e†ect,
if no correction at all is applied.

Our solution, which retains the information content of
the whole image, is to apply the WT to the count rate image,
rather than to the photon image. The count rate image is
obtained by dividing the photon image by the exposure
map, pixel by pixel. Working on the rate (or Ñat-Ðelded)
image, no appreciable background discontinuity nor WT
ripples appear along ribs ; the edge correction is still applied
as before. Of course, the calculation of WT Ñuctuations has
to be suitably scaled for the Ñat-Ðelded image, since in this
latter case the pixel statistics is no longer Poissonian. The
amplitude of the count rate WT is therefore converted into
an ““ equivalent ÏÏ photon WT, by a suitable ““ e†ective ÏÏ
exposure time The computation of which is criticalteff. teff,for sources partially a†ected by detector artifacts, is dis-
cussed in Appendix B.

At each scale a, the WT of the rate image is then searched
for the presence of peaks, or local maxima, deÐned as those
pixels (x, y) in which the transform w(x, y, a) is larger than
that in the 8 neighboring pixels. A peak is retained as a
positive detection if its amplitude is signiÐcant with respect
to the expected Ñuctuations of the local background
(computed as in the previous subsection), at a given con-
Ðdence level np, as discussed in The value of n is chosen° 3.
to minimize the number of spurious detections while
retaining good detection efficiency for real sources, and it
has to be tuned using extensive simulations for the particu-
lar detector under consideration (see The thresh-Paper II).
old signiÐcance n cannot be determined from a priori
considerations alone, since it is a†ected by many complex
e†ects, such as, e.g., cross-correlation between background
Ñuctuations at di†erent scales, and the e†ect of sources on
background evaluation, in both the Ðrst and second iter-
ations. In this initial source search, the detection threshold
is actually set to a slightly lower value n2 p (n2\ n [ 0.2)
because the adopted spatial grid might incompletely sample
some peaks of w(x, y, a), yielding detections with apparent
signiÐcance lower than the actual value.

4.3. Source Merging and Cross-IdentiÐcation
The spatial grid where the WT at a given scale a is evalu-

ated is chosen to avoid the oversampling of the WT peaks.
Since photon noise may give rise to multiple peaks within

we merge all detections within of thepPSF, dmax\ 1.5 pPSFposition of a given detection at each scale a (see Appendix D
for the choice of The position and WT amplitudedmax).w(x, y, a) of the resulting merged source are those of the
maximum value of w(x, y, a) for that group of detections.

We then cross-identify sources found at di†erent scales, in
order to estimate the proÐle of the WT peak amplitude w(a)
for all scales, to compute source counts and extent with
their associated errors. This cross-identiÐcation is done by
matching the positions of sources detected at di†erent
scales. Two sources are matched if their distance is less than

(a, 1.5 The Ðnal position error for a givendmax\ max pPSF).detected source is estimated at the scale where the detection
is most signiÐcant (see ° 4.4).

We cross-identify only sources detected at consecutive
scales, since for a real source we do not expect ““ dips ÏÏ in the
detection signiÐcance as a function of a : such dips, yielding
a double-peaked proÐle of y(a), would be indicative of either
a spurious source (which will be likely a low-signiÐcance
detection), or the close superposition of two sources of very
di†erent size (e.g., a point source and an extended source),
which therefore need to be deÐned as distinct objects. The
ability to do this is peculiar to the multiscale approach of a
WT analysis.

It is possible that a group of point sources that are either
too weak or too close together to be detected individually
are instead detected as a single extended source. Although
the WT approach may allow us in some cases to resolve
close sources not resolvable by other methods (Appendix

this difficulty is more closely related to the instrumentD),
or detector properties and cannot be solved by a detection
method, however reÐned.

4.4. Evaluation of Source Position
To derive the source position more accurately, we next

compute the WT in a small neighborhood (square of side
2a) of each source at the scale where y(a) is a maximum,amax
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over a Ðner grid of spatial positions (with spacing of image12pixel for the smallest scales, and 1 pixel for the larger ones),
and we Ðnd the WT peak, yielding both a reÐned position
and WT amplitude for the source. In the limit of inÐnite
statistical signiÐcance, the positional accuracy attained is of
the order of half the reÐned grid spacing. For Ðnite photon
statistics, positional accuracy is poorer ; a study of it on the
basis of both real and simulated data is presented in Paper

for the speciÐc case of the ROSAT PSPC. At this stage,II,
the signiÐcance threshold for a detection is set exactly to np,
since we are now accurately sampling the peak of w(x, y, a) ;
a few sources still below that signiÐcance level are now
rejected.

4.5. Source Count Rate and Size
In order to determine the count rate and size of a Gauss-

ian source, we make use of the function y(a) \ w(a)/a intro-
duced in which for a Gaussian source is equal to° 2,

y(a) \ 1
a

2Isrc
[1] (psrc2 /a2)]2 , (13)

having a maximum for Here y(a) is pro-amax\ (3)1@2 psrc.portional to the source intensity (count rate) not to theIsrc,source total counts since we apply the WT to theNsrc,count rate image ; is the source width. To make use ofpsrcit is necessary to evaluate the WT at theequation (13),
detected source position for various values of a and then
Ðnd the values of and that best approximate theIsrc psrcobserved proÐle of y(a).

While this problem seems at Ðrst sight to be soluble with
ordinary (nonlinear) s2 Ðtting, this is not straightforward to
apply. First, many sources are weak, and not far above the
detection threshold, so that y(a) evaluated at scales much
di†erent than will be dominated by noise, and willa \ amaxnot be usable in the Ðtting. Second, implicit in equation (13)
is the assumption of an underlying Ñat background, which
may be violated because of sky background nonuni-
formities. Third, and most important, doesequation (13)
not take into account the presence of other sources in the
image, whose WTs, described by start to inter-equation (4),
fere with each other as soon as the scale a approaches the
separation between sources. In principle, it is possible to
arrange all interference terms between N sources, at a Ðxed
scale a, into a N ] N square matrix and to invert this latter
to recover the ““ original ÏÏ WT amplitudes (and source rates

provided that all sources have been detected and thatIsrc),their size and positions are accurately known. However,
such a matrix inversion would strongly amplify errors in the
input data, yielding nonsense results when the number of
sources N becomes fairly large.

However, even for images containing only sparse point
sources on a Ñat background, without source interference, it
is not rigorously correct to apply a s2 Ðtting to y(a) data.
Indeed, measurements of y(a) made at di†erent scales a are
not independent, the source photons being reused at each a.
Therefore, the errors on y(a) measured at various a will not
be mutually independent, and this will alter the derived
parameter conÐdence intervals, based on the s2 probability
distribution (although the best-Ðt parameters may be
correct in the absence of source interference and appre-
ciable noise). Therefore, there are a number of reasons that
suggest us to avoid the approach of a s2 Ðtting to the y(a)
proÐle.

Looking for an alternative way of deriving count rates
and sizes for detected sources, we note that, for a given
source, the values of y(a) least a†ected by both large errors
and interference with nearby sources are those close to a \

The Ðrst assertion should be quite obvious, since theamax.scale yielding a maximum of y(a) is close to the oneamaxyielding a maximum signiÐcance for that detection, because
the signiÐcance curves for a given conÐdence level kp,
deÐned in are almost Ñat using the y(a) representation.° 3,
The WT w(a) for is also not signiÐcantly a†ecteda \ amaxby interference : in order for two close sources of width psrcto be detected as distinct, it is necessary that their overall
photon distribution makes two distinct peaks, although
their wings may overlap ; therefore, their separation is d [
2 such peaks of the photon distribution will producepsrc ;distinct peaks (detections) in the WT for scales a ¹ 2 psrc \
d, and in particular for while theyamax\ (3)1@2 psrc (eq. [6]),
interfere and eventually merge in the WT at larger scales.
The relative interference term between the WT of two iden-
tical sources at a scale with the minimum separationamax,d \ 2 can be evaluated from andpsrc, equation (4) (° 2),
amounts to e~1@2/2 D 0.3, decreasing rapidly for increasing
d. Therefore, the maximum of the function y(a) provides the
least biased measure of source properties (counts and extent)
for marginally detected or marginally resolved sources. We
then estimate to zeroth order the source size as psrc \

and the count rate asamax/(3)1@2 Isrc \ (89)w(amax).If a source has been detected with a high signiÐcance level
and is relatively free of interference with nearby sources,
then a more reÐned derivation of its properties may be
made, based on two values of y(a) close to maximum.
Suppose that we have detected the source at two scales
close to say and and measuredamax, a1 a2, w(a1)/a1\ g1and respectively. From we havew(a2)/a2 \ g2, equation (13)

a2
a1

C1 ] (psrc2 /a22)
1 ] (psrc2 /a12)

D2\ g1
g2

, (14)

which, setting and transforms intoa 4 a2/a1 x 4psrc2 /a12,

a2] x
1 ] x

\
Sg1 a3

g2
4 k0 , (15)

where is the only term dependent on the data (andk0a†ected by error). Thus,

psrc \ a1
Sk0[ a2

1 [ k0
. (16)

Once is known, the count rate is directly obtainedpsrc Isrcfrom equation (13).
Although this procedure is not the same as a Ðt (there is

just one curve of the family described by havingeq. [13]
values in respectively), it shares with a s2 Ðtg1, g2 a1, a2,the mentioned problem that and are not statisticallyg1 g2independent measures. This a†ects the determination of
errors on and In order to overcome this difficulty,psrc Isrc.we have developed an orthogonalization procedure to
derive such errors in the correct way, described in Appendix

If the relative errors on and derived in this wayC. Isrc psrcare not >1, then this procedure is not correct, and we must
use the zeroth-order approximation for and theIsrc psrc ;errors on rate and size in this case are computed in

as well.Appendix C
For some purposes, it may be useful to estimate the

number of source counts, This may be derived fromNsrc.
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already computed, using a suitably weighted exposureIsrc,time (which is not the same as deÐned in andtphot teff ° 4.2
To derive consider a source with knownAppendix B). tphot,count rate and size if the ith pixel in the givenIsrc psrc ;source region has exposure and a fraction of the sourcet

i
e
iphotons falls in it because of the Ðnite source size, then the

total number of recorded source counts is

Nsrc \;
i

Isrc t
i
e
i
. (17)

If are the coefficients of the WT at the source position atw
ia scale then the source count rate is derived asa \ amax,

Isrc \ 89w(amax) \ 89 ;
i

Isrc w
i
e
i
. (18)

Therefore, will betphot\ Nsrc/Isrc

tphot \
9
8

;
i
t
i
e
i

;
i
w

i
e
i
, (19)

which allows us to derive once is known. WhereNsrc Isrcover the source region, we havet
i
D const \T tphotDteff D T .

4.6. Upper L imits
The large areas of the image that do not contain sources

above threshold still contain valuable information. Upper
limits to Ñuxes (e.g., in X-rays) at the positions of objects
known from other wavelengths can be important (e.g.,
““ dividing line ÏÏ for stellar coronal activity, & HaischLinsky

et al. To estimate these upper limits, we1979 ; Ayres 1981).
proceed in an entirely analogous way to source detection.
A given undetected source will have a size determined by
the local PSF, if it is pointlike, orpsrc \pPSF psrc \

if it has a Ðnite projected size Assign-(pPSF2 ] pproj2 )1@2 pproj.ing Ðxes the shape of the WT amplitude w(a) of thepsrcsource, deÐned by letting free its normalizationequation (5),
namely, the source count rate. For increasing theIsrc, Isrc,source WT proÐle w(a) will shift upward, until for some

scale a it will be equal to the threshold WT amplitude curve
for np source detection, deÐned byw0(n, q)/teff equation (7)

in scaled by deÐned in since we are° 3, teff Appendix B
working on the WT of a count rate image. The threshold
curve at a signiÐcance level np depends on the photon
density q but may be deÐned as a function of a once the(° 3)
background density b is known, since q \ ba2. A source is
marginally detected (at np signiÐcance level) when its w(a)
proÐle becomes tangent to the threshold signiÐcance curve
at np (see Fig. 8) :

w(a) \ 2Isrc
[1 ] (psrc2 /a2)]2

¹
w0(n, ba2)

teff
. (20)

This condition applies for a scale (a \a D amax\ (3)1@2 psrcexactly in the continuous limit), which, inserted inamax allows us to derive the np limiting count rateequation (20),
The background density b needed to deÐne the properIsrc.signiÐcance curve should be deÐned on a scale close to amax,as for source detection. If we want to compute the upper

limit close to a detected source (within a few times pPSF),then a correction must be applied ; this is derived in
Appendix D.

The upper limit computed in this way for point sources in
every position in the Ðeld of view makes a self-consistent
limiting sensitivity map for point-source detection in a

FIG. 8.ÈComparison between the function w(a) (dotted and dashed
lines) and detection threshold curve (solid line), to evaluate upperw0(k, q)
limits. The threshold curve is computed assuming a background density
b \ 1.0 counts pixel~2, and the w(a) curves are computed for a source size

pixels and three di†erent count rates (normalization). Thepsrc \ 10 Isrccurve w(a) labeled as ““ detected ÏÏ is higher than the threshold between the
scales and and such a source is therefore detected at scales in thisa1 a2,range. The curve labeled ““ undetected ÏÏ never crosses the threshold, and the
source is not detected at any scale a. The ““ marginal ÏÏ case (dotted line)
corresponds to a source that is barely detected at one single scale thea0 :
normalization corresponding to such a case yields the upper limit onIsrcthe count rate of an undetected source, with the given size and localpsrcbackground.

given observation. Depending on the particular application,
such a sensitivity map may even be constructed without
correcting for the presence of sources ; for example, this
would allow us to know how much farther the detected
sources themselves could have been located, while remain-
ing detectable with our method.

4.7. Ellipticity of Extended Sources
If a source is found as extended, then we may relax the

assumption of isotropy that we made from the beginning,
and study if the source has an elliptical shape, through a
suitable change on the generating wavelet. Of course, such
an analysis is mainly worthwhile if the source was detected
with sufficiently high In this subsection wesigniÐcance.1
assume that our source has an elliptical shape, with a
Gaussian proÐle along each axis :

s(x, y) \ Isrc
2np1p2
] e~*(x cos hs`y sin hs)2@2p12+~*(~x sin hs`y cos hs)2@2p22+ ,

(21)

1 It is, in principle, possible that a weak elongated source be signiÐcant
only when an anisotropic wavelet is used. We nonetheless prefer to do the
initial source search using an isotropic wavelet, since the use of anisotropic
wavelets would enormously enlarge the parameter space to be searched
(two wavelet scales plus position angle) and therefore the computational
load, with only a very modest expected increase in the number of detec-
tions.
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being the source position angle, and its widths alongh
s

p1,2two perpendicular directions. is the total source countIsrcrate.
We can accordingly generalize the generating wavelet of

to a form g(x, y, which includes aequation (2) a1, a2, h
w
),

dependence on two scale parameters and one waveleta1, a2position angle The convolution of this function with theh
w
.

elliptical source yields a function wpeak(a1, a2, p1, p2,The study of this latter function for variableh
s
[ h

w
, Isrc).and allows us to derive the source geometricala1, a2 h

wparameters and and its intensity Details ofp1, p2, h
s
, Isrc.these computations are described in Appendix E.

5. SUMMARY AND CONCLUSIONS

In this work, we have developed the general mathemati-
cal aspects of a wavelet-based source detection algorithm,
to be applied to images obtained with current photon-
counting detectors.

In the analysis of such images (e.g., X-ray images), we are
faced with special difficulties, only rarely encountered, for
example, in optical images : the image may be signiÐcantly
vignetted, it may be partially obscured by sharp ribs, there
may be quantum efficiency variations, and the PSF may
vary strongly with o†-axis angle. While this last property is
easily handled using wavelets, the Ðrst three are not, and we
had to devise a special technique, resorting to the obser-
vation exposure map to compute a count rate image (Ñat-
Ðelding) and then reconstructing the statistical properties of
the transform as if it were done on the original photon
image. We have paid particular attention to statistical
issues, in order to derive accurate thresholds to discriminate
background Ñuctuations from true sources at an assigned
conÐdence level. To do so, the probability distribution of
WT values obtained by transforming a Ñat background
noise has been studied in detail.

After a multiscale process of source detection and veriÐ-
cation, properties such as source count rates and sizes (and
possibly ellipticity) are derived, as accurately as the avail-
able photon statistics permits. Errors on these quantities are
computed in a statistically accurate way as well. We evalu-
ate upper limits on a list of positions, based on essentially
the same principles that allow us to estimate count rates for
detections ; this enables us to build a self-consistent sensi-
tivity map over the entire Ðeld of view. The whole detection
process occurs in two steps, which di†er in the way the
background is computed : in the Ðrst one, a smoothed (local)
background map is computed irrespective of the presence of
sources, while in the second one a similar map is inter-
polated over detected source regions, thus more resembling
a ““map ÏÏ method.

Of course, the application of the method to images
obtained with a given detector requires a Ðne tuning to take
into account the detailed properties of the detector. Among
the most important di†erences between various detectors,
from the point of view of implementation of our algorithm,
are the shape and sharpness of image edge, the presence of
underexposed regions (ribs or interchip gaps), and espe-
cially the average background density k. The former two
problems may be dealt with relatively easily through the use
of the exposure map. A problem may instead arise if the
background density per resolution element is very low,
namely, if since in such a case it becomes difficultkpPSF2 ¹ 1,

to evaluate accurately the local background, especially
where the source density is high. Such a problem may occur
with short exposures (as it was also the case for the Einstein
Slew Survey ; et al. and with high-resolutionElvis 1992)
detectors, and will be extremely relevant for the AXAF
HRC/ACIS detectors, having an extremely narrow PSF.
Obviously, a compromise must be achieved between sta-
tistical signiÐcance and ““ locality ÏÏ of the used background
representation.

Notwithstanding such a difficulty of building an accurate
background map, which is also shared with many other
source detection schemes for photon-counting detector
images, with the wavelet approach we are able to deal with
images consisting of sparse arrays of one-photon pixels,
since we have calibrated WT detection thresholds down to
low values of (scaled) background q, in the ““ discrete
photon ÏÏ limit.

Besides being appropriate to analyze low-exposure or
high-resolution images, such a kind of situation also occurs
if in place of single photons one has other objects, for
example, stars or galaxies, and one is interested to Ðnd local
clusters of such objects (““ sources ÏÏ) in projection onto the
sky plane (or any other plane). WTs have already been
applied to this problem by Bijaoui, & MarsSlezak, (1990),

& Mazure and Slezak, & MazureEscalera (1992), Escalera,
but only using an approximate statistical treatment(1992),

of the WT. To approach this problem with our method,
only little modiÐcations are required to the procedure
described in this paper ; among the most signiÐcant are the
following. First, the position of such individual objects is
usually known with high accuracy (with respect to their
average apparent separation), so that the image ““ PSF ÏÏ
may be taken as zero, unlike the case dealt with here, in
which the PSF size sets the smallest length scales on which
information is present in the data. This implies that the
minimum and maximum scales for WT analysis may be
difficult to deÐne. Moreover, as is typical of the discrete
photon limit, the local background level (density of objects
outside clusters) may be difficult to determine, since this
necessarily requires some average over large regions, poss-
ibly including clusters themselves.

Because of the form of the generating wavelet g(r/a)
chosen here, the WT is more sensitive to positive Ñuctua-
tions (peaks) in the data than to negative ones (holes), which
in the context of object cluster detection may occur, e.g.,
because of local enhanced obscuration (dark clouds). To
detect these ““ holes ÏÏ in the data, some other generating
wavelet g(r/a) may be more appropriate, such as, for
example, simply the negative of g(r/a), which we deÐne as
g~(r/a) 4 [g(r/a), having a strong negative minimum for
r \ 0. The corresponding WT is of course w~(x, y,
a) \ [w(x, y, a), with thresholds w0~ \ [w0(k, q) (eq. [7]),
which amounts to compute the WT exactly as before, Ðnd
its negative peaks and select a source (i.e., hole) aswmin,signiÐcant if [wmin[w0(k, q).

A further generalization of WT analysis is its application
to three-dimensional data sets, made, e.g., of projected sky
positions (x, y) plus a distance z (spectroscopic parallax, or
redshift) for a list of objects. The ““Mexican hat ÏÏ generating
wavelet may then be generalized to three dimensions, as

g
Ar
a
B

\
A
3 [ r2

a2
B
e~r2@2a2 , (r2\ x2 ] y2] z2) , (22)
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in order to ensure its volume mean to be zero. It is then
necessary to recompute all probability distributions P

q
(w)

and to use a proper three-dimensional background map. All
other steps remain essentially the same, except for the
increased computational load due to the extra dimension.
The three-dimensional WT analysis would of course allow
the detection in the real space of star or galaxy clusters,
which may not be evident when projected on the plane of
the sky, because of the increased background of objects.

Finally, a generalization is possible to more dimensions,
including, e.g., the energy and arrival time data for detected
photons in a X-ray data set, in addition to position. Such

generalizations are, however, beyond the scope of this
paper.
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APPENDIX A

DERIVATION OF THE PROBABILITY DISTRIBUTION OF THE WAVELET TRANSFORM OF
BACKGROUND NOISE

In this Appendix we study the probability distribution of WT values resulting upon transforming a background noise
image, with the purpose of deriving thresholds for source detection in the WT space. We examine both cases of very low and
high background, whose statistics are markedly di†erent.

1. One background photon.ÈFor one background photon in a circle of radius 5a around a Ðxed point the(x0, y0),probability that this photon falls in a surface element dA around a point is(x1, y1)

P(x1, y1)dA\ 1
25na2 dA . (A1)

Then, the image to be transformed is f (x, y) and its WT in is w\ g(r/a), where\ d(x [ x1, y [ y1), (x0, y0) r2\ (x1 [ x0)2DeÐning z4 r2/a2, we have a WT of the form] (y1[ y0)2.
w(z) \ (2 [ z)e~z@2 , (A2)

and a probability distribution

P(z)dz\ 125 dz . (A3)

Now, the probability that the value of the WT falls in an interval is the sum of probabilities that z falls in anyw0^ dw0interval such that (inverse images of the interval on the z-axis), namely,z
i
^ dz

i
w(z

i
) \w0 w0^ dw0

P(w0)dw0\ ;
i

P(z
i
)dz

i
(A4)

(see For a Ðxed the equation has only one solution, (and the above sum contains only oneFig. 9). w0 º 0, w(z) \w0 z1\ 2
term), while for it has two solutions, and (two terms in the sum). Therefore, the probability P(w) isw0\ 0 z1\ 4 z2[ 4

P(w) \ P(z1)
K dz
dw
K
z1

\ 1
25(2 [ z1/2)e~z1@2 ; (wº 0) ,

P(w)\ P(z1)
K dz
dw
K
z1

] P(z2)
K dz
dw
K
z2

\ 1
25(2[ z1/2)e~z1@2] 1

25(z2/2 [ 2)e~z2@2 ; (w\ 0) .

(A5)

Since the function w(z) cannot be inverted analytically, we cannot write P(w)dw explicitly as a function of w ; rather, it has been
computed numerically, and it is shown in The distribution is highly asymmetrical (although it has zero mean), withFigure 10.
tails up to w\ 2 (for z\ 0) and down to w\ [ 2e~2 (for z\ 4) ; photons falling at larger z, for which w(z) tends to zero from
the negative side, build the strong peak of P(w) just below w\ 0 ; the nonmonotonicity of w(z) makes P(w) discontinuous in
w\ 0. We shall refer to this distribution as since it refers to one background photon.P1(w),

2. Two or more background photons.ÈIf there are two background photons in the same area A\ 25na2, then the total WT
will be since the WT is a linear transform, where and refer to the Ðrst and second photon, respectively,w\ w(zI) ] w(zII), zI zIIand and are both distributed as Under these circumstances, the total w will have a probability distributionw(zI) w(zII) P1(w).

namely, the convolution of two one-photon distributions. Of course, this is generalized for theP2(w) \ P1(w) ? P1(w),
probability distribution for n background photons, as convolved n times with itself ). As isP

n
(w) P

n
\ P1? P1? É É É ? P1 (P1known, convolution is best done in Fourier space, where it involves a simple product of functions. We need, therefore, to

compute the Fourier transform of say raise it to the nth power, and transform it back to getP1(w), P3 (p), P
n
(w).

The Fourier transform of isP1(w)

P3 (p) \
P
~=

`=
e~ipwP1(w)dw\

P
0

25
e~ip(2~z)e~z@2P(z)dz\ 125

P
0

25
e~ip(2~z)e~z@2 dz . (A6)
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FIG. 9.ÈThe function w(z) and the mapping of an element dw on elements on the z-axisdz
i

This integral can be hardly evaluated analytically, so we have computed all Fourier transforms numerically, using FFT
routines. In general, we are interested to know in detail the positive tails of the distributions say at probability levelsP

n
(w),

equivalent to the Gaussian 3 p to 5 p, to discriminate well true sources from background Ñuctuations and obtain a very small
number of false detections even after having tested a large number of positions (““ trials ÏÏ). For example, the threshold value

corresponding to a probability level of 0.9999998 (5 p for a Gaussian distribution) that is not due to aw\ w0 wº w0background Ñuctuation is given implicitly by the following relation :

1 [
P
~=

w0
P
n
(w)dw\ 2 ] 10~7 . (A7)

Such a determination of for a given probability level is near or even beyond what can be computed with the Ðnitew0numerical precision of the ““ standard ÏÏ numerical approach using FFTs. This latter method therefore should not be used to
derive conÐdence levels for w, but simply to illustrate the shape of for various n and to show the existence of the twoP

n
(w)

limiting behaviors of ““ discrete photon limit ÏÏ for small n and the ““ continuous limit ÏÏ for large n As explained in it is(° 3). ° 3,
also useful to deÐne the dimensionless background parameter q \ ba2, on which the distributions depend. In our case,P

n
(w)

since b \ n/25na2, we have q \ n/25n.
In the continuous limit, when the photon statistics per pixel becomes Gaussian, tends to a Gaussian distribution, asP

n
(w)

may also be derived from statistical arguments (central limit theorem). The integral

w\
P A

2 [ r2
a2
B
e~r2@2a2f (r, h)d2r (A8)

deÐnes the WT of the background noise f (r, h) (\number of photons per unit area, whose spatial average is a constant
background density k) ; it may be approximated as a discrete sum of terms (a Ðnite number since the integrand is e†ectively
nonzero only in a Ðnite region) : where and is the number of photonsw\ ;

i
w

i
n
i
, w

i
\ [2[(r

i
2/a2)]e~ri2@2a2, n

i
\ f (r

i
, h

i
)A

ifalling in the area around We suppose that the values are spaced closely enough that di†erences between andA
i

(r
i
, h

i
). r

i
w
iare so small that the summation approximates well the integral for w. If the values all have a Gaussian distributionw

i`1 n
iwith mean and variance both equal to (the limiting form of a Poisson distribution for large n), then their linearSn

i
T p

i
2 kA

i
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FIG. 10.ÈProbability distribution for one background photon falling in an area 25na2. This distribution is normalized such thatP1(w) / P1(w)dw\ 1,
despite for some values of w.P1(w)?1

combination w just deÐned will have a Gaussian distribution as well, with mean

SwT \;
i

w
i
Sn

i
T \ k ;

i
w

i
A

i
] k

P A
2 [ r2

a2
B
e~r2@2a2 d2r \ 0 , (A9)

and variance

p
w
2 \ ;

i
w

i
2 p

i
2 \ k ;

i
w

i
2A

i
] k

P A
2 [ r2

a2
B2

e~r2@a2 d2r \ 2nka2\ 2nq , (A10)

on the basis of the convolution theorem. The variances computed in this way are in excellent agreement with those of thep
w
2

distributions (in the continuous limit) derived using FFTs. FFTs are a good test in this case since we are comparingP
n
(w)

variances and not higher quantiles.
In the discrete photon limit, where no analytic approximations are available and FFTs are too noisy to reach the desired

conÐdence levels for w, we have evaluated probability distributions through Monte Carlo simulations, made for variousP
n
(w)

values of q. As mentioned above, the value corresponding to a 5 p probability level (cumulative P\ 0.9999998) is such thatw0occurs 2 times in 107 trials. For each q, therefore, we have realized 107 simulations of a uniform background,wº w0computed their WT, and built the distribution of w ; we have then evaluated the upper quantiles of the distributions P
q
(w)

computed in this way, up to the 5.5 p quantile, with increasing accuracy toward lower quantiles because of the better
simulation statistics. The results of these simulations are shown in as Ðlled circles. We have also veriÐed that forFigure 5 (° 3)
q º 300, becomes nearly indistinguishable from a Gaussian with the expected variance (continuous limit), inP

q
(w) p

w
2 \ 2nq

close agreement with the computations previously discussed.



364 DAMIANI ET AL. Vol. 483

APPENDIX B

CALCULATION OF EFFECTIVE EXPOSURE TIME

The e†ective exposure time deÐned in has the purpose of permitting a comparison between the positive Ñuctuationsteff ° 4.2
found in the rate WT with those expected from the neighboring background, to establish if they are real sources or not.
Therefore, its meaning is that of a tool to convert detection thresholds between the case of a (rib-free) photon WT and that of a
rate WT under examination. Note that deÐned in this way is not a source exposure time to be used to convert a source rateteffto source total counts ; this latter is introduced in ° 4.5.

We have introduced the threshold for the photon WT in and now call the corresponding threshold forw0(k, q) ° 3 w0r(k, q)
the count rate WT, such as The parameter q, deÐned in is the same for and sincew0r(k, q) 4 w0(k, q)/teff. ° 3, w0(k, q) w0r(k, q),
in both cases it is computed from the background map. An analytic expression for may be found in the ““ continuous limit ÏÏteffintroduced in roughly speaking, this limit is applicable when there are many photons per pixel (which unfortunately is° 3 ;
usually not the case below ribs). However, this way to compute is probably the best one before resorting to empiricalteffmethods. In the continuous limit we have simply w0(k, q) \ k(2nq)1@2.

Suppose to have a uniform cosmic background emission, yielding a count rate of R photons s~1 pixel~1 just before
reaching the detector with its spatially varying e†ective exposure time. After interaction with the detector, the number of
photons in the ith pixel (having e†ective exposure will be Poisson-distributed with mean and variancet

i
) n

i
, k

i
p
i
2, k

i
\ p

i
2\

The WT in a point P of such a background count rate image, modulated by spatially nonuniform exposure, is computedRt
i
.

as (see eq. [1])

w
An

i
t
i

B
\ ;

i
w

i
n
i

t
i
, (B1)

and its variance, computed as a quadrature sum, is
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2
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\ ;

i
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2\;
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i
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, (B2)

assuming the values are free of error. In these and the following equations, the writing [or refers to a quantity wt
i

w(x
i
) p2(x

i
)]

(p2) that is computed from a set of pixel values The coefficients are deÐned as where g is the generatingx
i
. w

i
w
i
\ g(r

iP
/a),

wavelet is the distance between the ith pixel and the point P, and a is the WT scale ; moreover, all sums are to be(eq. [2]), r
iPintended as two-dimensional, running over all image pixels. Suppose now that the same background is observed with a

similar detector, but free of spatial variation of exposure in the source region, so that The variance of the WTt
i
\ const \T .

of such a new background, yielding photons/pixel, is thereforen
i
@

p
w
2
An

i
@

T
B

\ R
T

;
i

w
i
2 , (B3)

and the ratio between the two variances is

p
w
2 (n

i
/t

i
)

p
w
2 (n

i
@/T )

\T ;
i
w

i
2/t

i
;

i
w

i
2 . (B4)

Furthermore, Since in the continuous limit the ratio between detectionp
w
2 (n

i
@/T ) \ (1/T 2)p

w
2 (n

i
@) \ (1/T 2)2nq. w0/w0r (\teff)thresholds for photon and rate WT, at the same conÐdence level kp, is equal to the ratio between the standard deviations of

photon and rate WT, respectively, we can write

p
w
2
An

i
t
i

B
\ 1

teff2 p
w
2 (n

i
@) \ 2nq

teff2 ; (B5)

therefore,

teff \
ST ;

i
w

i
2

;
i
w

i
2/t

i
, (B6)

which solves our problem. In order to be applied in our case, T is the slowly varying vignetted exposure time we would have
in the absence of ribs, in the same position, and the reference background variance is accordingly computed for ap

w
2 (n

i
@) \ 2nq

vignetted background but unobscured by ribs. Such a background has been computed, as explained in by interpolation° 4.1,
over ribs, even at positions actually covered by ribs, and needs not to be recomputed. Although derived in the continuous
limit, this expression for works generally Ðne to deÐne proper detection thresholds ; we present in tests showingteff Paper II
that there is no appreciable excess of spurious sources near ribs because of large count rate Ñuctuations and that at the same
time a good detection efficiency is retained. If all values are nearly equal, then as well, and mayt

i
t
i
D T , teff D T equation (B6)

therefore be used far from ribs as well.
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APPENDIX C

DERIVATION OF ERRORS ON SOURCE COUNT RATE AND SIZE

In this Appendix we present a statistically accurate derivation of errors on count rates and sizes, needed since the latter
were evaluated in on the basis of nonindependent measurements. We use here the same terminology used in that section.° 4.5
There, the size and count rate for a source were derived from two values, and of the function y(a) at the source position,g1 g2,computed respectively at two scales, and close toa1 a2, amax.Since our derivation of depends only on the ratio we should evaluate the error on such a ratio of nonin-psrc r 4 g1/g2,dependent measurements. To do this, we Ðrst note that and are computed as linear combinations of the count rate imageg1 g2pixel values namely,x

i
,

g1\;
i

g1i x
i

(C1)

The sum is two-dimensional, over image pixels ; the coefficients are deÐned in terms of the generating wavelet g(r/a) as(eq. [2])
where is the distance between the ith pixel and the source position. This is analogous for We may theng1i \ g(r

i
/a1)/a1, r

i
g2.write as the scalar product where is the vector made of all coefficients, and x is the vector of pixel datag1 g1\ g1 Æ x, g1 g1i x

i
.

The lack of statistical independence of and then arises because (in general) they are not orthogonal linear combinationsg1 g2of the data namely, In order to have two independent measurements, we should orthogonalize in a proper wayx
i
, g1 Æ g2D 0.

the vectors and Before doing that, however, we have to normalize the data vector x by dividing each pixel by itsg1 g2. x
istandard deviation yielding a modiÐed data vector x@ whose elements are Failure to do so would never yieldp

i
, x

i
@ \ x

i
/p

i
.

orthogonal and suppose that we have a prominent pixel (and which implies andg1 g2 : x
k
? x

iEk
p
k
? p

iEk
), g1D g1k x

kcausing and to be strongly correlated, no matter how they have been orthogonalized. Having changed x intog2D g2k x
k
, g1 g2x@, we modify accordingly into vectors with elements in order that the scalar products remaing1,2 g1,2@ g1,2@i \ g1,2i p

i
, g1,2unaltered : We then write r asg1,2 \ g1,2 Æ x \ g1,2@ Æ x@.

r \ g1
g2

\ g1@ Æ x@
g2@ Æ x@

. (C2)

To separate into two components, respectively normal and parallel to we apply a Gram-Schmidt orthogonalizationg1@ g2@ ,procedure :

g1@ \
C

g1@ [g2@
Ag1@ Æ g2@

g2@ Æ g2@
BD

]g2@
Ag1@ Æ g2@

g2@ Æ g2@
B

4 g3@ ] g4@ , (C3)

where is the term within square brackets in the middle expression, and is the last term. Then we write :g3@ (o g2@ ) g4@ (p g2@ )

r \ g3@ Æ x@
g2@ Æ x@

] g4@ Æ x@
g2@ Æ x@

\ g3
g2

]
Ag1@ É g2@

g2@ Æ g2@
B

\ g3
g2

] k1 . (C4)

The term (last term) depends only on the coefficients known with no error if are so (as we will assume) ; therefore, itk1 g1,2@i , p
iis a constant additive term to r and does not contribute to the error on r. This term contains the ““ parallel ÏÏ part of whichg1,varies in proportion to The error on r is thus entirely given by the error on the ratio between and which now areg2. g3 g2,

statistically independent (since allowing us to compute the error on r using classical methods :g3@ o g2@ ), p
r

p
r
2/r2\ p32/where is the error on since the error on is (and ang32] p22/g22, p2 (p3) g2 (g3), p22 \ ;

i
(g2@i)2(pi

@)2\ ;
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@ \ p

i
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i
\ 1

analogous expression for Having found the error on r, and therefore also the error on (see wep32). p
k0

k0\ (ra3)1@2 eq. [15]),
derive easily the error on from since we have from which the errorp

x
x \p2/a12 equation (16), p

x
\ [ o 1[ a2 o/(k0[ 1)2]p

k0
,

on source size is derived.*psrc psrcAs for the error on the source count rate, we may write a suitable expression for Isrc :

Isrc \ g1 a1
2
A
1 ] psrc2

a12
B2\ a1(a2[ 1)2

2
1

[(Ja3/Jg2)[ (1/Jg1)]2
. (C5)

DeÐning c as

c\
Sa1(a2[ 1)2

2Isrc
\Ja3

Jg2
[ 1

Jg1
, (C6)

we have, with the same formalism as before,

dc\ [ 1
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Ja3
Jg23
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2
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Jg13
dg1\

A
[ 1
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Ja3
Jg23

] k1
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2
1

Jg13
dg3 . (C7)

Here, we have again decomposed the variation of into two parts, respectively orthogonal and paralleldg1 g1 dg1\ dg3] dg4,to (namely, unrelated and proportional to respectively). Note that (k \ 1È4) is the variation of due to variationsdg2 dg2, dg
k

g
k
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of the data not of the Ðxed coefficients The ““ parallel ÏÏ part isx
i
, g

k
i . dg4

dg4\ dg2
Ag1@ Æ g2@

g2@ Æ g2@
B

\ k1 dg2 , (C8)

allowing us to write the last equality of Then,equation (C7).
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Jg23

B2
p22] 1

4g13
p32 , (C9)

from which we derive easily the error on usingIsrc, *Isrc, equation (C6).
If the errors and thus derived are not small compared with and the assumptions of the procedure are*psrc *Isrc psrc Isrc,violated, and we then use the zeroth-order approximation to evaluate and In this case, errors are computed aspsrc Isrc.follows : since the spacing between adjacent scales where we evaluate y(a) is a factor (2)1@2, the error in our derivation of amax(and then should be at most a factor 20.25, namely, To derive the error on we start frompsrc) *psrc/psrc \ 20.25 [ 1 D 0.19. Isrc,the expression given in to deriveequation (C5),

dIsrc
Isrc

\ dg1
g1

] 4 psrc/a12
(1] psrc2 /a12)

dpsrc \ dg1
g1

] dpsrc
psrc

, (C10)

the last passage being made since therefore, Errors on rates anda1\ amax\ (3)1@2 psrc ; (*Isrc/Isrc)2\p12/g12] (*psrc/psrc)2.sizes evaluated directly from simulated data are in agreement with those estimated here.(Paper II)

APPENDIX D

CORRECTION TO UPPER LIMITS NEAR DETECTED SOURCES

If we have an estimate of the background at the position of a point source, which is virtually una†ected by the presence of
that source (as for the background correction of the upper limit computed as in will be smaller than the detected° 4.1), ° 4.6
source count rate. This is obviously incorrect, since having actually detected the source, we cannot possibly Ðnd a weaker one
in the same position, nor very close to it (compared to We should therefore Ðnd a correct way to compute upper limitspPSF).near detected sources. The detection of more sources close to an already detected source is essentially limited by the detector
spatial resolution, rather than its sensitivity ; to evaluate true upper limits near detected sources requires consideration of our
ability to detect separately close sources.

1. Two sources of equal strength.ÈSuppose there are two identical sources (pointlike, i.e., Gaussian with width psrc \pPSF),separated by a distance d. It is simple to show that their overall spatial distribution of photons (assuming inÐnite photon
statistics) makes two distinct peaks if d [ 2 while the two sources are blended together for smaller separation d. OurpPSF,method is, however, based on the search for peaks in the WT of the image, not in the image itself, so that we need to compute
the smallest separation d for which the two sources give rise to two distinct peaks in the WT. The WT of a point source with
width computed at a scale a is given by The WT of both sources, computed along the direction of theirpsrc, equation (4).
separation, is proportional to

I(x) \
A
2 [ x2

b2
B
e~x2@2b2 ] a

C
2 [ (x [ d)2

b2
D
e~(x~d)2@2b2 , (D1)

where and a ¹ 1 is the source intensity ratio ; the stronger source lies in x \ 0 and the fainter one in x \ db2\ a2] psrc2 , (Fig.
top). For two sources of equal intensity (a \ 1), a minimum of I(x) occurs for x \ d/2 by symmetry, if the sources make11,

distinct peaks. If this is the case, we have two sources are marginally resolved if(d2I/dx2) o
x/d@2[ 0 ;

d2I
dx2

K
x/d@2

\ 0 . (D2)

This implies, after some algebra,

d4
b4[ 28

d2
b2] 64 \ 0 , (D3)

and d2/b2\ 14 [ (132)1@2D 2.5. Therefore, If the scale a ] 0, then we have the surprising result thatd º (2.5)1@2(a2] psrc2 )1@2.
the minimum distance for resolving two sources is namely, the W T may have twodmin dmin\ (2.5)1@2 psrc D 1.6 psrc \ 2 psrc,distinct peaks where the original image shows two blended sources, acting as a sort of deconvolution. This is so because the WT in
a point ““ sees ÏÏ the photon distribution in the neighborhood of that point, not just in the point itself. However, this attractive
property of the WT is of little use, except for the brightest sources, since the amplitude of w(a) tends to zero as a4 when a ] 0
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FIG. 11.ÈProÐles I(x) of the WT of two close sources, along the direction x of their separation ; the two crosses at I(x)\ 0 in each panel mark the position
of the two sources, in x \ 0 and x \ d, respectively. All sources have a width The three top panels refer to two sources of equalb \ (a2] psrc2 )1@2\ 1.
intensity, while the three bottom panels refer to two sources with intensity ratio a \ 0.57. Top left : The two sources are unresolved, since d \ dmin(a \ 1) \

Top middle : The two sources are marginally resolved Top right : The sources are well resolved Bottom left : The two1.585. [d \ dmin(a \ 1)]. [d [ dmin(a \ 1)].
unequal-strength sources are unresolved, since Bottom middle : The two unequal sources are only marginally resolved,d \ dmin(a \ 0.57)\ 1.9. d \ dmin(a \

despite the fact that their distance is the same as the two resolved sources of the top right panel, showing the dependence of on a. Bottom right : Two0.57), dminunequal sources resolved, d [ dmin(a \ 0.57).

weak sources, indeed, are detected only at scales a close to and in this case we would have(° 2) ; amax\ (3)1@2 psrc, dmin\
(2.5)1@2 2 larger than the minimum peak separation in the photon image.psrc [ 2 psrc,2. Two sources of di†erent strength.ÈIf the two sources have unequal intensities (a \ 1), then will be a function of thedminintensity ratio a that can be inverted to yield If is the count rate of the stronger source in x \ 0, then the uppera \ a(dmin). Isrclimit on the count rate of another source in x \ d is where is the limiting count rateIlim\max [Isrca(dmin), Ilim0 ], Ilim0computed in the absence of the stronger source, simply because we would be unable (with the given detector and detection
algorithm) to separate the two sources for a lower (although the sensitivity itself of the detector may allow the detection ofIlimthe latter source down to a count rate if the former source were absent).Ilim0 ,

To compute we need to Ðnd out the parameter values a, for which the two WT peaks (maxima) associated witha(dmin), dminthe two sources start to merge together ; in this case, the position of the minimum of I(x) between the two sources and that of
the maximum of I(x) associated with the weaker source coincide bottom). In formulae :(Fig. 11,

dI
dx

\ 0 \
A
[ 4x

b2 ] x3
b4
B
e~x2@2b2 ] a

C
[ 4(x [ d)

b2 ] (x [ d)3
b4

D
e~(x~d)2@2b2 ,

(D4)
d2I
dx2 \ 0 \
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b2] 7x2
b4 [ x4

b6
B
e~x2@2b2 ] a

C
[ 4

b2] 7(x [ d)2
b4 [ (x [ d)4

b6
D
e~(x~d)2@2b2 .

Combining these two relations, one obtains a relation between the position x of the minimum and the minimum separation
namely (after long passages, and setting y 4 x/b, z4 d/b),dmin,

zy6[ 3z2y5] (3z3[ 5z)y4] (10z2[ z4)y3] (16z[ 9z3)y2] (4z4[ 16z2)y ] (16z[ 4z3) \ 0 . (D5)

This sixth-degree equation in y has among its solutions y \ y(z) one that for a ] 1 tends to the previously derived value,
namely, approaching y \ d/2b for z\ d/b/(2.5)1@2 (minimum separation for a \ 1) and disappearing for lower z, since for
d \ (2.5)1@2b no source may be separated, whatever the value of a. Writing this solution as we havey0(z), x \ by0(z) \
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and we then use to derive a as a function of d :by0(d/b), equation (D4)

a \ e*(x~d)2~x2+@2b2 4x [ x3/b2
[4(x [ d)] [(x [ d)3/b2] , (D6)

for d º (2.5)1@2b, and a \ 1 for d \ (2.5)1@2b, where the limit count rate coincides with the count rate of the source detectedIsrcin x \ 0. The above value of a(d) still depends on For point sources, while a is not assigned ;b \ (a2] psrc2 )1@2. psrc \pPSF,however, we are interested to have the highest signiÐcance detection, since the above approach is rigorous for inÐnite
signal-to-noise ratio, so that we should choose and therefore b \ 2 for point sources.a \ amax\ (3)1@2 psrc, pPSF,

APPENDIX E

DERIVATION OF GEOMETRICAL PARAMETERS FOR EXTENDED SOURCES

To derive the geometrical parameters of extended sources (semiaxes and position angle), we now generalize the generating
wavelet of to the following form:equation (2)

g(x, y, a1, a2, h
w
) \
C
2 [ (x cos h

w
] y sin h

w
)2

a12
[ ([x sin h

w
]y cos h

w
)2

a22
D

(E1)

] e~*(x cos hw`y sin hw)2@2a12+~*(~x sin hw`y cos hw)2@2a22+ .

The elliptical source s(x, y) deÐned in will still yield a peak in the WT at the position of its center. The valueequation (21) wpeakof the WT at the peak is computed as in with f (x, y)4s(x, y), and after some lengthy calculations may be put inequation (1),
the following form:

wpeak(a1, a2, p1, p2, h, Isrc) \ Isrc
2](p12/ah12 ) ] (p22/ah22 )

[1] (p12/ah12 ) ] (p22/ah22 ) ] (p12p22/a12 a22)]3@2
, (E2)

where andh \ h
s
[ h

w
,

1
ah12

\
A cos2 h

a12
] sin2 h

a22
B
,

1
ah22

\
A cos2 h

a22
] sin2 h

a12
B

. (E3)

Of course, the individual position angles and are not important, and the WT amplitude depends only on the relativeh
s

h
wposition angle h \ h

s
[ h

w
.

If (isotropic source), it is easy to see that will no longer depend on h. This is also the case whenp1\p2 wpeak a1\ a2\ a,
since we then have an isotropic generating wavelet cannot of course yield information on position angles. Forah1 \ ah2 \ a :

and reduces to the form given in of As a function of h, has a maximump1\p2\ psrc a1\ a2\ a, wpeak equation (5) ° 2. wpeakfor h \ 0 (if and and the general expression for isp1º p2 a1º a2), wpeak(h \ 0)

wpeak(h \ 0) \ Isrc
[1] (p12/a12)]] [1] (p22/a22)]
M[1] (p12/a12)][1] (p22/a22)]N3@2

, (E4)

dependent only on the two ratios and For and both going to zero, the functionp1/a1 p2/a2. p1/a1 p2/a2 wpeak\ 2Isrc ;analogous to y(a) \ w(a)/a deÐned in will therefore have a maximum for Ðnite andy(a1, a2) 4wpeak/(a1 a2)1@2, ° 2, p1/a1 p2/a2,which occurs for as in the isotropic case. Contours of equal values of the function in thep1/a1 \p2/a2\ 1/(3)1@2, y(a1, a2)plane are shown in(p1/a1, p2/a2) Fig. 12.
The maximum of as a function of and occurs therefore fory(a1, a2) a1, a2, h

w
h
w

\ h
s
, a1 \ (3)1@2 p1, a2\ (3)1@2 p2.Therefore, to Ðnd the semiaxes and and position angle of an elliptical source would in principle require thep1 p2 h

sexploration of a three-dimensional parameter space to Ðnd the maximum of(a1, a2, h
w
) y(a1, a2).However, we know already that the source has been detected with a WT peak at a certain scale using an isotropic WTamax,with In this case, the function y(a, a) has the following form:a1\ a2\ a. \ wpeak/a

wpeak
a

\ Isrc
a

[1] (p12/a2)]] [1 ] (p22/a2)]
M[1 ] (p12/a2)][1] (p22/a2)]N3@2 , (E5)

whose maximum occurs for a scale satisfying the equationa \ amax,

3(p12] p22)p12 p22
amax6 ] 10 p12 p22

amax4 ] p12] p22
amax2 [ 2 \ 0 . (E6)

The solution of this equation may be written in the formamax
amax2
p12

\ f
Ap22
p12
B

, (E7)
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FIG. 12.ÈContour plot of the function in the plane, for a source with total intensity The cross indicatesy(a1, a2) \wpeak/(a1 a2)1@2 (p1/a1, p2/a2) Isrc \ 1.
the position of the maximum, for Contours are labeled with the value of assuming and at maximump1/a1\ p2/a2\ 1/(3)1@2. y(a1, a2), p1\ p2\ 1,
y(a1, a2) \ (27)1@2/8 \ 0.6495.

where f is a complicated analytic function. Then, we analyze the source with an anisotropic wavelet with (Ðxed) scales anda1respectively larger and smaller than [for example, and with variable Having Ðxeda2, amax a1\ (2)1@2amax, a2\ amax/(2)1@2], h
w
.

and is now only a function of whose maximum (occurring for h \ 0) indicates the position angle ofa1 a2, wpeak h \ h
s
[ h

w
, h

sthe source. The function has a period of n, a minimum occurring for h \ n/2 ; the modulation amplitudewpeak(h) A
w

\
is a function of and is very sensitive to this ratio for values which includes mostwpeak(h \ 0)/wpeak(h \ n/2) p1/p2 p1/p2¹ 10,

of the range observed for astronomical sources, with the above choice of The function may be inverteda1, a2. A
w
(p1/p2)numerically to derive using we then obtain the semiaxes and of the source, since is known.p1/p2 ; equation (E7), p1 p2 amaxEventually, the source intensity can be derived fromIsrc equation (E5).
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