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ABSTRACT

We have developed a method based on wavelet transforms (WTs) to detect sources in astronomical
images obtained with photon-counting detectors, such as X-ray images. The WT is a multiscale trans-
form that is suitable for detection and analysis of interesting image features (sources) spanning a range of
sizes. This property of the WT is particularly well suited to the case in which the point-spread function
is strongly varying across the image, and it is also effective in the detection of extended sources. The
method allows one to measure source count rates, sizes, and ellipticity, with their errors. Care has been
taken in the assessment of thresholds for detection, in the WT space, at any desired confidence level,
through a detailed semianalytical study of the statistical properties of noise in wavelet-transformed
images. The method includes the use of exposure maps to handle sharp background gradients produced
by a nonuniform exposure across the detector, which would otherwise yield many spurious detections.
The same method is applied to evaluate upper limits to the count rate of undetected objects in the field
of view, allowing a sensitivity map for each observation to be constructed.

Subject headings: methods: data analysis — methods: statistical — techniques: image processing

1. INTRODUCTION

In most astronomical images a large fraction of sources is
near the detection limit. A careful statistical treatment is
then needed to determine their existence and their proper-
ties, such as accurate position, flux, size, etc. Furthermore,
the reliability of the source detection method has implica-
tions for the assessment of source statistical properties, such
as their luminosity function. It is therefore important to
have a detection method that is both efficient for detecting
sources in the field of view and reliable in the sense that it
yields only a predefined number of expected spurious detec-
tions.

A case of particular importance for X-ray, y-ray, EUV,
and some UV detectors is the photon-counting regime,
where the information for most sources has to be extracted
from a handful of photons, and the photon statistics per
image pixel is significantly different from Gaussian. In this
case, methods for source detection commonly used for
optical images are no longer effective. Moreover, many
kinds of astronomical objects are known, and some of them
are observable as spatially extended sources. Examples are
supernova remnants in Local Group galaxies (including the
Milky Way), galaxies themselves, and clusters of galaxies; in
the two latter cases the emission may be superposed on that
of other point sources. An ideal detection algorithm should
be able to recognize these cases and deal properly with
them.

Among all photon-counting detectors, present-day X-ray
detectors (such as the PSPC and HRI on ROSAT, and the
forthcoming EPIC camera on X M M) have only limited and
nonuniform spatial resolution, which of course makes the
analysis of X-ray images more complex. X-ray images with
significantly higher resolution will be obtained with the
ACIS and HRC detectors on the Advanced X-Ray Astro-
physics Facility (AX AF), but the detection problems will be
similar, albeit dealing with smaller angular sizes. The instru-
ment that has already collected the largest amount of
spatial X-ray data is the PSPC on board ROSAT : its point-
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spread function (PSF) is bell shaped with an FWHM as
wide as approximately 20” on axis and becoming gradually
degraded (i.e., wider) farther from the optical axis, reaching
a width of a few arcminutes at the image edge (Hasinger et
al. 1993). In spite of this degradation, PSPC images still
contain a considerable amount of useful information at off-
axis angles in the range 20'—40’, where neither vignetting
nor the PSF widening are too severe. However, most
current source detection algorithms for the PSPC do not
efficiently detect sources so far off-axis; once again, there-
fore, a more versatile tool for X-ray image analysis is desir-
able.

In this paper we explore the capabilities of a relatively
new method of source detection, based on wavelet trans-
forms (WTs). For an introduction to WTs, see, e.g.,
Daubechies (1992) or Kaiser (1994). In general, the WT is a
multiscale transform providing a representation of the data
that allows easy extraction of both the position and the
shape of features, in an image or in a light curve. This is
unlike classical Fourier analysis, which provides only shape
information, and also unlike simple object-finding methods
looking for peaks (maxima) in the original data, which
provide only positional information. Analogous explora-
tion of a wavelet-based X-ray source detection has been
already presented by Rosati, Burg, & Giacconi (1994) and
Grebenev et al. (1995); a similar technique (“matched
filter ”) has been employed by Vikhlinin et al. (1995). In the
present work, many improvements have been brought to
this technique, which include a better quantified statistics of
noise in WT images, the use of exposure maps to handle
spatial exposure nonuniformities, the computation of upper
limits using the WT, and a careful treatment of errors on
flux and size of detected sources, among other things.

Although the WT has wider application in the temporal
and spectral domains, we will limit ourselves to character-
izing the spatial properties of each detected object simply by
deriving a single number as a measure of its size. A compan-
ion paper (Damiani et al. 1997, hereafter Paper II) presents
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extensive tests of the performance of our algorithm for the
case of ROSAT PSPC X-ray images.

In § 2 we outline the basic characteristics of our method.
Then, in § 3 we study the statistical properties of the WT,
which allow us to establish confidence levels for the exis-
tence of detected sources. Later (§ 4), we present a complete
description of our algorithm, for both detecting sources and
evaluating upper limits on a list of positions. Section 5 is a
summary of the results obtained.

2. PROPERTIES OF THE METHOD

The WT of a data set allows the selection of particular
features of interest in the data. Various kinds of WTs exist,
depending on what data properties are being investigated,
and they rely on different “ generating wavelets ”; common
to all types of generating wavelets is their dependence on
position and length scale, and also their having zero mean
and finite norm. In the case of images in two or more
dimensions, there may be as many independent scale
parameters as the number of dimensions.

The WT of a two-dimensional image f(x, y) is defined as

W, 3, @) = f f g(% %)f(xc y)xdy . (1)

where g(x/a, y/a) is the generating wavelet, x and y are the
pixel coordinates, and a is the scale parameter. In our case,
f(x, y) describes the number of photons recorded in each
pixel of the image; we are interested in detecting discrete
sources of emission, having in most cases a nearly bell-
shaped spatial profile; therefore, we choose for g a function
having a similar shape (if we had interest to find a localized
periodicity in the data, we would have chosen an oscillating
g, and so on). An useful property of every function g is that
it is a localized function, namely, it is appreciably different
from zero only in a finite neighborhood of the position (x, y)
where it is evaluated. Therefore, the value of w(x, y, a)
defined in equation (1) will be affected only by the values of
f(x, y) in positions within a few times the scale parameter a.
The evaluation of w(x, y, a) at different scales a permits the
study of structures in the data f(x, y) of various spatial sizes.
The choice of a unique scale parameter for both x and y
axes arises from the assumption that most sources are iso-
tropic, and it may be relaxed to study anisotropic sources
(see §4.7).

Throughout this work, we use the two-dimensional
“Mexican hat ” wavelet (see Fig. 1):

2
g(;‘c f) = g(%) - <2 - Z‘)‘” *=x*+37), @

which has all properties required for a generating wavelet
and is significantly different from zero only for r less than a
few times a (e.g., |g| = 10~ for r < 5a). Our definition has a
slightly different normalization (by a factor a) from that
given by other authors (e.g., Rosati et al. 1994), but it is
more convenient because g is dimensionless.

This chosen g ensures that the WT of a function f(x,
y) =c¢; + ¢, x + c3y (a tilted plane) is zero. Therefore, the
WT will be zero for both a constant or uniform gradient
local background (within ~ 5a). While the WT is not sensi-
tive to gradients in the data with this choice of g, it is
sensitive to second derivatives of f(x, y), e.g., local maxima
or minima, or even “step functions,” making it suitable for
detecting sources in an image [local maxima of f(x, y)].
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Fi1G. 1.—Mexican hat-generating wavelet g(r/a)

This is clear if we note that [integrating by parts, and pro-
vided that the function f(x, y) goes to zero at infinity]

2
Wi, 3, @) = f f (2 - C’;)e-ﬂ”ﬂf(x', )i dy

o
- _ j J e_'2/2a2<ax_£ + Wi)dx/dy’ , 0

where r* = (x — x)* + (y — ¥)~

Unfortunately, second derivatives can arise from instru-
mental artifacts, for example, because of shadows cast by
the entrance window supporting structures or “ribs” in
proportional counters, or interchip gaps in CCD-based
detectors. We deal with this differently in § 4.2.

Let us consider a source with N total counts and with
a Gaussian shape of width o, namely, s(r)=
N,../2n62 e~ 1?7 jts WT is (see Fig. 2):

w(r, a) =

r2
SIrc 2 _ e—r2/2(a2+gsr02) , 4
ot () @
which, as a function of r, has the same form as the gener-
ating wavelet g(r/a), provided that a is replaced by the quad-
rature sum (a® + 62 .)'/% The peak of this function occurs
for r = 0, where the WT amplitude depends on a as

2NSI’C
(A + ol/a®)*

Such dependence allows us to derive the width o, of a
Gaussian source once its WT has been computed at several
scales a. It is useful to understand the asymptotic behavior
of w,..(a) [henceforth denoted simply as w(a)] as the ratio
o,../a assumes very small or very large values. If the WT is
computed at a scale a much larger than the source size
(0,c/a — 0), then the source shape is “seen” as a d-function
by the transform; therefore, for a fixed source width o,
w(a) approaches a finite value w(a) = 2N, as a - oo. If the

()

wpeak(a) =
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F1G. 2—Top: Image of a Gaussian source over a flat background, with
Poisson noise. The Gaussian width is o, = 2 pixels. Bottom: Wavelet
transform (WT) of the image at the top, at scale a = (2)!/?g,,.. The negative
annulus around the main peak is evident. In both panels the image border
is set to zero to provide a reference level, and comparison between top and
bottom images shows that the WT of a flat background is zero on average.

source is much larger than the region where the generating
wavelet is significantly different from zero (¢,.,/a — o), then
the transform sees the source as an almost flat background,
and w(a) tends to zero as (a,./a) " *. This property of the WT
turns out to be very useful if the studied image contains a
superposition of sources of different sizes (e.g., point and
extended sources), since the transform w(a) for scales com-
parable to the size of the smallest sources will be affected
very little by the underlying larger source, which is seen as
only an enhanced background emission.

If we consider the function y(a) = w(a)/a, then we see that
this tends to zero for both a — 0 and a — oo (for a fixed o,,.),
as a® and a~ !, respectively (see Fig. 3). This function has
therefore a maximum for a finite value of a, namely,

Amax = 3 Osre » (6)

allowing us to measure the source width o,.. The existence
of such a maximum of y(a) explains why we stated that the
WT at a given scale is particularly sensitive to structures of
about that size. The value of the transform for a = a,,,,
allows an estimate of source counts, since w(a,,,) =
(9/8)N s

Sources in the image f(x, y) are therefore defined as local
maxima in the function w(x, y, a), at a given scale, which
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F1G. 3.—Profile of the function y(a) = w(a)/a vs. log a for a Gaussian
source.

cannot be due to background fluctuations with a certain
assigned probability level.

3. STATISTICAL PROPERTIES OF NOISE IN
WAVELET-CONVOLVED IMAGES

In order to establish the statistical significance of a candi-
date source detection, we need to know the statistical
properties of the WT and, in particular, of the probability
distribution P(w) of the WT values due purely to the fluc-
tuations of a uniform background. While the mean value of
P(w) is necessarily zero since g(r/a) has zero mean, the dis-
tribution variance increases with the image background
intensity.

We derive in detail in Appendix A the probability dis-
tribution of WT values resulting from wavelet-transforming
a spatially uniform photon background with Poisson noise.
Such a distribution P(w) is not easy to compute. Other
authors (e.g., Starck et al. 1996 and references therein) make
use of an approximate treatment of the statistics of the WT,
based on the transformation of the analyzed image into
another one with unit variance. This is not suitable when
there are only a few photons per image pixel.

The probability distribution P(w) depends on both the
background density b and the wavelet scale a, but only
through the dimensionless combination ¢ =b x a*
(number of photons per square scale, or “photon density ”),
as is easy to understand, since the generating wavelet g only
depends on the ratio r/a. Correspondingly, we denote as
P (w) the probability distribution of the WT noise. In the
derivation of the distributions P (w) (Appendix A) we will
also make use of the number n of photons falling within a
radius Sa, related to g by n = 25nq. The probability dis-
tributions P,(w) for n =4, 16, 256, and 4096 (q = 0.051,
0.204, 3.26, and 52.1, respectively) are shown in Figure 4. As
may be seen from this figure, P,(w) is highly asymmetrical
for low n (“discrete photon limit ”), while it approaches a
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FiG. 4—Probability distribution P,(w) (solid line) for n background photons within 25za?, for n = 4, 16, 256, and 4096. Dotted lines show Gaussian
distributions with variance ¢ = 2nq, which approach P,(w) (where n = 25nq) for large n values.

Gaussian distribution (also shown in Fig. 4) as soon as n
becomes at least a few hundreds (“continuous limit ). The
transition between the two limits is very smooth: to be
safely in the continuous limit requires that » is as large as a
few x 10%.

The higher quantiles of the distributions P (w) define
thresholds w, for acceptance of a measured WT amplitude
w > w, as not being due to background fluctuations at a
certain confidence level. On the basis of the distributions
P (w) derived through Monte Carlo simulations (Appendix
A), we have looked for a convenient parameterization of the
threshold w, for fluctuations of w at a probability level
corresponding to ko of a Gaussian distribution, expressed
as a function of k and g, wo = wy(k, q). To do this, we have
noted that the difference between the values of w,, yielded by
our simulations at each k (=number of Gaussian ¢) and the
corresponding continuous-limit value ko, = k(2ng)'/* is

nearly a constant, independent of g, say Aw(k), for
—1 <log q <4 (a range comprising the vast majority of
values we have found in present-day X-ray images); then,
we have found empirically that Aw(k) is very well approx-
imated by a quadratic polynomial in k, Aw(k) = ¢, + c, k
+ c3 k? (with ¢; = —0.2336, ¢, = 0.0354, and c; = 0.1830),
in the range of k that could be explored with our simula-
tions, namely, 0.5 < k < 5.5. Therefore, we approximate

wolk, q) = k\/2nq + (c; + c, k + c; k?), (7

shown as dotted lines in Figure 5, which is seen to repro-
duce the simulation results (filled circles) quite well. This
approximation may also be used to estimate the threshold
w, at still higher k by extrapolation, which, however, is not
essential for source detection purposes, since usually a
threshold between 3-5 ¢ is sufficient to yield very few spu-
rious detections. The formula given in equation (7) predicts



354 DAMIANI ET AL.

35
A
+

0

logw

log q

F16. 5.—Detection thresholds w(k, q) [quantiles of P (w)], for k in the
range 0.5-5.5; ko is the significance threshold, and g = b x a?, where b is
the local background density. Filled circles indicate the results of Monte
Carlo simulations, while dotted curves are the analytic approximations to
the simulation data discussed in the text. Each curve refers to a different
value of k, indicated on the right-hand side of the figure. For g > 300, the
dotted curves are close to straight lines, implying that P (w) is close to a
Gaussian.

correctly that for fixed k the probability levels approach
those of a Gaussian distribution for increasing g, i.e., in the
continuous limit. Finally, for a fixed ¢, and assuming that it
holds for all k, equation (7) may be inverted to yield the
“significance level” k as a function of w, and g, i.e., the
confidence level in terms of Gaussian ¢ values that the given
local excess (detection) can be generated by a random back-
ground fluctuation.

4. THE ALGORITHM

We now describe the steps that our algorithm goes
through to produce a final list of detected sources (Fig. 6).
After having computed the exposure map for the given
observation (step 1), the reference background map is com-
puted by a suitable smoothing of the image (step 2). Then, a
local median filter is applied to recompute the background
at every scale of a set g, (step 3), to minimize the effect of
point sources on the background determination. The WT
w(x, y, a) of the image f(x, y) is then computed on a grid of
positions (x;, y; and for each scale g, (step 4). Spatial
maxima (peaks) of w(x;, y;, a,) are selected if their heights
are above the expected background at a chosen significance
level (step 5). Problems arise near underexposed regions in
the studied images (such as the PSPC “ribs”), since the
apparent sharp background gradient they generate can be
mistakenly detected as a source by the wavelet method. To
solve this problem we use appropriate exposure maps
§ 4.2).

For each scale a, groups of detected sources lying closer
than a minimum distance are merged into a single source.
After having built a list of sources detected at all scales a, a
cross-identification of sources detected at consecutive scales
is made, so that w(x,, y,, a) may be evaluated as a function
of a for a given source lying at (x,, y,), at least for those

Vol. 483

1 Start : input image and
exposure map

@ Background map calculation
 —

-
@ Background median map—|
1

4 WT computation
on count-rate image

@ Source detection —I

I

Repeated for
all scales

Cross-identification
6 at various scales, and
rough source parameters

I
@ Improved source positions

I
e Source sizes and intensities
through WT profile study

First

iteration 9 | New source-subtracted
background map
Second
iteration I—_

10 Final source list

F1G. 6.—Block diagram of the algorithm

scales a where the source is detected. This allows us to
derive the intensity and extent of the source (step 6).

Having determined the scale a,,,, yielding the maximum
significance for a given detection, we refine the spatial grid
where we search the maximum of w(x, y, a,,,,), to derive a
more accurate position (step 7). Since source positions may
have slightly changed after this best-position step, we repeat
the source merging and cross-identification steps on the
new source positions. At the improved positions, source
parameters are more accurately derived (step 8).

At this stage, we have an almost final list of detections.
However, we have found that, in some (rare) cases, a weak
source is not detected when another stronger source lies
nearby (but the two are still clearly resolved by eye), while
comparably weak sources are invariably detected if they are
isolated; the reason for this is that the effect of strong
sources on the computation of the local background level is
difficult to screen out completely; therefore, the local detec-
tion threshold is raised with respect to its true value,
causing the nondetection of weak sources. Since all strong
sources are detected at this stage, we now correct the back-
ground maps eliminating their effect (by interpolation over
their positions) and iterate a second time the whole pro-
cedure described above with the improved background
(step 9). The background map used in the second iteration is
therefore more like the “reference map” used by existing
“map-detect” methods (see Harnden et al. 1984;
Zimmermann et al. 1993), while the first iteration makes use
of a reference background more like a “local-detect”
method. One can iterate further times in the same way, until
no more sources are detected.

Eventually, the algorithm produces a list of all sources in
the input image detected above the chosen significance level
(step 10). For each source we are able to estimate its posi-
tion, count rate, and size, with their errors. The accurate
evaluation of errors on these quantities is not straightfor-
ward and is discussed in § 4.5. Following a procedure
entirely analogous to source detection, we estimate also
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upper limits to the count rate of undetected objects in the
field of view. Finally, we apply a nonisotropic WT to
extended sources (i.e., larger than the detector PSF), to
derive their ellipticity and position angle.

We describe in detail all steps outlined above in the fol-
lowing subsections.

4.1. Computation of Background Maps

A necessary preliminary step to source detection is the
evaluation of the reference background, which defines
detection thresholds. This has to be computed locally,
rather than as a global value in the image, since it may vary
significantly across the image, both because of the detector
vignetting and obscuring structures and, more importantly,
because of real variations of the sky background (extended
sources, cosmic background gradients). The adoption of a
uniform sky background value would lead to the detection
of false sources where the local background is higher than
the average, as preliminary simulations confirm (Fig. 7), and
to the lack of detection of real sources where it is lower than
average.

The local background value should be computed with the
least possible uncertainty and should be ideally unaffected
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by point sources. In order to attempt to satisfy both
requirements, we compute the reference background in two
steps: the first, common to all scales q, is the generation of a
smoothed background map, while in the second step a local
median of this background map is computed, on a region of
size increasing with the scale a at which the WT is being
evaluated, in order to reduce to a minimum the influence of
sources on background evaluation.

The construction of the initial background map is
intended to follow spatial variations of background as
closely as possible (including sources), and with large
enough photon statistics to yield only a small error on the
computed background. Since the smallest length scale on
which sky background gradients can appear is set by the
local PSF width opgr, we compute the background map by
smoothing the original image f(x, y) with a Gaussian whose
width is oy,, = 2 gpsr in each point, ie., narrower at the
center and increasingly wider farther off-axis. A larger
smoothing Gaussian width o, is used in those points
where there are too few photons entering smoothing, until a
sufficient number of photons are available in an area 62,
(25 photons in our implementation, which should ensure a
minimum S/N ratio of about 5).

FiG. 7—Simulation of an extended source, namely, much larger than opge, with indicated positions of detections (circles) obtained by assuming for the
whole image the same average background level. The circle radius is equal to the scale of each detection. All sources but the one indicated by the large circle

are spurious, and they arise because of the bad adopted background estimate.
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Where there are strong gradients in the exposure map,
because of detector artifacts (e.g., PSPC “ribs ”), their width
in the image is independent of the local PSF and so should
not be included in the smoothing. We interpolate over
detector artifacts, assigning relative Gaussian weights to the
smoothed points:

B(xo, ¥o) = [ fx, y)e 20 dx dy
05 Yo) = [s e "ot dxdy

)

where b(x,, y,) is the smoothed background in the point
(X05> Vo) Osmo = 2 Opsr is the width of the smoothing Gauss-
ian, and r* = (x — x,)* + (y — yo)?; the integration domain
S’ excludes all points in which the exposure time is less than
0.8 times the value outside ribs, affected only by vignetting.
Exposure times for each pixel are deduced from properly
computed exposure maps.

The final background value in a point, as mentioned
above, is obtained at each scale a by computing the median
of the background map over a square region of side [ =
4(a? + o2gr)'’? centered on the given position. The median
filter screens out the highest values (sources) of the back-
ground map, unless a source is very bright and affects a
larger area of the background map. The scale dependence of
the size of the region where the local background median is
computed is in the spirit of the scale-invariant approach
that characterizes WTs. We note also that this procedure
may cause an extended source to be considered as back-
ground at some scales, smaller than its size, while the same
source will be screened out from background evaluation at
larger scales, comparable to the source size, as is appropri-
ate in order to detect it at these latter scales.

We stated that weak sources in the neighborhood of
stronger ones are occasionally not detected by our algo-
rithm. The reason for this lies in an overestimate of the
background, not in the WT method itself, because residual
influence from the strong nearby sources could not be elimi-
nated.

Therefore, a correction is made after the first-stage detec-
tion process (see §§ 4.2-4.5), excluding circles around point
sources, including 95% of source photons (radius ~2.5 opgp
for the PSPC), and interpolating with equation (8). Sources
found as extended (o, > 2 gpgr) are not interpolated over,
since they effectively behave as background for overlying
point sources. We then iterate the detection procedure after
recomputing the background using the improved back-
ground maps.

It might be argued that a weak, isolated point source, just
above the nominal threshold for the local “true” back-
ground, may remain undetected in the first iteration since it
raises the local background estimate, derived as above; the
same source will also not be detected in the second iter-
ation, where the background is corrected only near detected
sources. We have computed that the effect of such a barely
detectable source on our local background evaluation is
typically on the order of 10%, and the source significance
will thus be lowered by 5% (see below). However, this does
not reduce the algorithm ability to detect weak sources, for
two reasons. First, the same effect helps to reject positive
background fluctuations as candidate sources. Second, the
algorithm’s threshold significance levels for detection have
not been chosen from a priori criteria, but such as to yield
an assigned number of spurious detections on the basis of
the performances of the whole algorithm on simulated data
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(Paper II); therefore, the slight inaccuracy in our back-
ground evaluation does not reduce the detection efficiency,
since it is compensated by a readjustment of the detection
threshold. Namely, if the background computation method
is self-shielding against detection of spurious fluctuations,
the threshold can be lowered with respect to its “nominal ”
value, and weak (real) sources that would otherwise be lost
can thus be detected.

We estimate the effect of a weak source on background
median evaluation as follows. The background is computed
as the median over a square region of side /, defined above,
of the smoothed background map. This latter is (locally) a
function of the form

5(r)=b+&

Oot

e_"z/ZO'totz (9)

arising from a local (uniform) background of density b, plus
a point source with N, counts, at the center of the square
(r = 0). After smoothing (eq. [8]), this source has a width
Oror = (6240 + 03sp)** = (5)'/? opgr. Since the function b(r) is
a monotonically decreasing function of r, its median over
the square is simply the value of b(r) at a radius R encircling
half of the square area: nR* = I?/2. Now we choose a detec-
tion threshold of 4 o, assume to be in the continuous-
limit approximation, and set the detection scale a =
Ao =(3)?0psr], appropriate for marginally detected
sources (§ 4.6). In this case, N, = $)W(an.) = G)w, =
(3)4(2nba?,, )%, since for a marginally detected source, the
wavelet amplitude w(a,,,,) is equal to the threshold w, (eq.
[7]). We have also | = 4(aZ,, + osp)'/* = 8 opgsr; therefore,

16 /6 e_16/5">
45 T /bo-l%SF

= b<1+ 0.177 > . (10)
iV bagSF

The quantity bo 3 is the number of background photons in
the source (core) area and is larger than 1 in most cases. As
an example, in the ROSAT PSPC case, for a source 15
off-axis, exposure time of 5 ks, and average background,
one obtains b,,.4;,, = 1.137 x b, i.e., only a slightly inaccu-
rate background estimate, as mentioned above. We also see
that the background estimate will be worse for a very
narrow PSF, and we discuss in Paper II that indeed this will
be a major difficulty for detecting weak sources using low-
background, very high resolution detectors.

Emedian = E(R) = b<1 +

4.2. Wavelet Transform Computation and Source Detection

This step is at the heart of our detection method, yet it is
maybe the simplest part of the whole procedure. The WT of
the image is computed at a set of scales a, ranging from
about opgr at image center, to a few times opgr at image
edge, in (logarithmic) steps of (2)1/2, in order to cover the
range of apparent sizes of most sources in the image
(including moderately extended sources). Since real features
in the image (apart from ribs) cannot be smaller than the
PSF in size, the WT at a scale a is computed only on image
regions where opsr < a. This choice of the region to be
analyzed at each scale a, moreover, results in a reduction by
1 order of magnitude of the needed computing time, with
respect to full-image analysis. The largest scale used is
about 1/15 of the field of view radius, since the approx-
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imation of uniform background is often not valid for larger
scales. The spacing between points of the spatial grid where
the WT is evaluated is chosen as a/2, since a grid spacing
much smaller would only oversample the data with no gain
of information. The WT is computed applying directly
equation (1). We have found this computational method to
be more convenient than computing the convolutions using
fast Fourier transforms (FFTs), because the function g(r/a)
is localized and symmetric and because the analyzed region
radius and grid spacing change with scale a.

Both the image edges and detector artifacts cause the
appearance of spurious ripples in the WT, which should be
corrected for before source detection. The most important
difference between image edge and artifacts is that exposure
time drops to exactly zero beyond the edge, while it usually
does not below artifacts; the obscuration due to artifacts is
not total partly because of the telescope motion during the
observation (“wobbling”) and also because they intrinsi-
cally turn out not to block all incident photons, even in the
absence of telescope wobbling. This causes intense sources
to appear even below artifacts, and simply ignoring image
regions obscured by ribs would therefore waste useful data
(e.g., about 10% of a PSPC image); details on how we deal
with partially obscured sources are presented in Appendix
B.

A correction is easily applied near the image edge. The
edge is sharp compared to the local PSF and therefore
behaves like a step function (in the radial direction),

1, 7<Tegqe>
11
0, 7>Tegqe (1)

Jotesr) = {

(r is a radial coordinate and the edge occurs at r = r.4,,),
whose WT, in the limit a < r4,,, is

Wstep(r - redge’ a) = 27[(1(7' - redge)e_(r_re‘igE)Z/za2 . (12)

This is positive for r < r.4,., meaning that a positive ripple
in the WT appears inward of the edge over a length scale of
order a, ie. in zones where we look for sources. If the
background at the edge is b, then the WT ripple is bwg,(r
— Teqge» @). We therefore subtract this term from the pre-
viously computed WT of the image at each scale a, prevent-
ing the formation of WT peaks that would lead to detection
of many spurious sources along edges.

Analogously, the WT of a (idealized) rectangular rib is the
sum of two terms similar to equation (12), with two ripples
along the rib border. As simulations show clearly (Paper II),
a large number of spurious sources appear due to this effect,
if no correction at all is applied.

Our solution, which retains the information content of
the whole image, is to apply the WT to the count rate image,
rather than to the photon image. The count rate image is
obtained by dividing the photon image by the exposure
map, pixel by pixel. Working on the rate (or flat-fielded)
image, no appreciable background discontinuity nor WT
ripples appear along ribs; the edge correction is still applied
as before. Of course, the calculation of WT fluctuations has
to be suitably scaled for the flat-fielded image, since in this
latter case the pixel statistics is no longer Poissonian. The
amplitude of the count rate WT is therefore converted into
an “equivalent” photon WT, by a suitable “effective”
exposure time t... The computation of ¢, which is critical
for sources partially affected by detector artifacts, is dis-
cussed in Appendix B.
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At each scale a, the WT of the rate image is then searched
for the presence of peaks, or local maxima, defined as those
pixels (x, y) in which the transform w(x, y, a) is larger than
that in the 8 neighboring pixels. A peak is retained as a
positive detection if its amplitude is significant with respect
to the expected fluctuations of the local background
(computed as in the previous subsection), at a given con-
fidence level no, as discussed in § 3. The value of n is chosen
to minimize the number of spurious detections while
retaining good detection efficiency for real sources, and it
has to be tuned using extensive simulations for the particu-
lar detector under consideration (see Paper II). The thresh-
old significance n cannot be determined from a priori
considerations alone, since it is affected by many complex
effects, such as, e.g., cross-correlation between background
fluctuations at different scales, and the effect of sources on
background evaluation, in both the first and second iter-
ations. In this initial source search, the detection threshold
is actually set to a slightly lower value n,o (n, =n— 0.2)
because the adopted spatial grid might incompletely sample
some peaks of w(x, y, a), yielding detections with apparent
significance lower than the actual value.

4.3. Source Merging and Cross-Identification

The spatial grid where the WT at a given scale a is evalu-
ated is chosen to avoid the oversampling of the WT peaks.
Since photon noise may give rise to multiple peaks within
opsr, We merge all detections within d,,,, = 1.5 opgp of the
position of a given detection at each scale a (see Appendix D
for the choice of d,,,). The position and WT amplitude
w(x, y, a) of the resulting merged source are those of the
maximum value of w(x, y, a) for that group of detections.

We then cross-identify sources found at different scales, in
order to estimate the profile of the WT peak amplitude w(a)
for all scales, to compute source counts and extent with
their associated errors. This cross-identification is done by
matching the positions of sources detected at different
scales. Two sources are matched if their distance is less than
d nax = max (a, 1.5 opgp). The final position error for a given
detected source is estimated at the scale where the detection
is most significant (see § 4.4).

We cross-identify only sources detected at consecutive
scales, since for a real source we do not expect “dips” in the
detection significance as a function of a: such dips, yielding
a double-peaked profile of y(a), would be indicative of either
a spurious source (which will be likely a low-significance
detection), or the close superposition of two sources of very
different size (e.g., a point source and an extended source),
which therefore need to be defined as distinct objects. The
ability to do this is peculiar to the multiscale approach of a
WT analysis.

It is possible that a group of point sources that are either
too weak or too close together to be detected individually
are instead detected as a single extended source. Although
the WT approach may allow us in some cases to resolve
close sources not resolvable by other methods (Appendix
D), this difficulty is more closely related to the instrument
or detector properties and cannot be solved by a detection
method, however refined.

4.4. Evaluation of Source Position

To derive the source position more accurately, we next
compute the WT in a small neighborhood (square of side
2a) of each source at the scale a,,,, where y(a) is a maximum,

max
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over a finer grid of spatial positions (with spacing of 3 image
pixel for the smallest scales, and 1 pixel for the larger ones),
and we find the WT peak, yielding both a refined position
and WT amplitude for the source. In the limit of infinite
statistical significance, the positional accuracy attained is of
the order of half the refined grid spacing. For finite photon
statistics, positional accuracy is poorer; a study of it on the
basis of both real and simulated data is presented in Paper
11, for the specific case of the ROSAT PSPC. At this stage,
the significance threshold for a detection is set exactly to no,
since we are now accurately sampling the peak of w(x, y, a);
a few sources still below that significance level are now
rejected.

4.5. Source Count Rate and Size

In order to determine the count rate and size of a Gauss-
ian source, we make use of the function y(a) = w(a)/a intro-
duced in § 2, which for a Gaussian source is equal to

1 2IS]’C , (13)
a1+ (o5/a*)]?

having a maximum for a,,, = (3)!/* g,.. Here y(a) is pro-
portional to the source intensity (count rate) I, not to the
source total counts N, since we apply the WT to the
count rate image; o, is the source width. To make use of
equation (13), it is necessary to evaluate the WT at the
detected source position for various values of a and then
find the values of I, and o, that best approximate the
observed profile of y(a).

While this problem seems at first sight to be soluble with
ordinary (nonlinear) y? fitting, this is not straightforward to
apply. First, many sources are weak, and not far above the
detection threshold, so that y(a) evaluated at scales much
different than a = a,,,, will be dominated by noise, and will
not be usable in the fitting. Second, implicit in equation (13)
is the assumption of an underlying flat background, which
may be violated because of sky background nonuni-
formities. Third, and most important, equation (13) does
not take into account the presence of other sources in the
image, whose WTs, described by equation (4), start to inter-
fere with each other as soon as the scale a approaches the
separation between sources. In principle, it is possible to
arrange all interference terms between N sources, at a fixed
scale a, into a N x N square matrix and to invert this latter
to recover the “original ” WT amplitudes (and source rates
I,,.), provided that all sources have been detected and that
their size and positions are accurately known. However,
such a matrix inversion would strongly amplify errors in the
input data, yielding nonsense results when the number of
sources N becomes fairly large.

However, even for images containing only sparse point
sources on a flat background, without source interference, it
is not rigorously correct to apply a y? fitting to y(a) data.
Indeed, measurements of y(a) made at different scales a are
not independent, the source photons being reused at each a.
Therefore, the errors on y(a) measured at various a will not
be mutually independent, and this will alter the derived
parameter confidence intervals, based on the y* probability
distribution (although the best-fit parameters may be
correct in the absence of source interference and appre-
ciable noise). Therefore, there are a number of reasons that
suggest us to avoid the approach of a y? fitting to the y(a)
profile.

ya) =

src
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Looking for an alternative way of deriving count rates
and sizes for detected sources, we note that, for a given
source, the values of y(a) least affected by both large errors
and interference with nearby sources are those close to a =
..« The first assertion should be quite obvious, since the
scale a,,, yielding a maximum of y(a) is close to the one
yielding a maximum significance for that detection, because
the significance curves for a given confidence level ko,
defined in § 3, are almost flat using the y(a) representation.
The WT w(a) for a = a,,,, is also not significantly affected
by interference: in order for two close sources of width o,
to be detected as distinct, it is necessary that their overall
photon distribution makes two distinct peaks, although
their wings may overlap; therefore, their separation is d >
2 g.; such peaks of the photon distribution will produce
distinct peaks (detections) in the WT for scales a < 2 g, <
d, and in particular for a,,,, = (3)'/? o, (€q. [6]), while they
interfere and eventually merge in the WT at larger scales.
The relative interference term between the WT of two iden-
tical sources at a scale a,,,,, with the minimum separation
d=2 o, can be evaluated from equation (4) (§ 2), and
amounts to e~ /2/2 ~ 0.3, decreasing rapidly for increasing
d. Therefore, the maximum of the function y(a) provides the
least biased measure of source properties (counts and extent)
for marginally detected or marginally resolved sources. We
then estimate to zeroth order the source size as o
Apar/(3)'/? and the count rate as I, = (3)W(Apay)-

If a source has been detected with a high significance level
and is relatively free of interference with nearby sources,
then a more refined derivation of its properties may be
made, based on two values of y(a) close to maximum.
Suppose that we have detected the source at two scales
close to a,,,, say a, and a,, and measured w(a,)/a; = g,
and w(a,)/a, = g,, respectively. From equation (13) we have

@[tﬂﬁﬁﬁTzzz (14

a; 1 + (o-szrc/a%) g2 ’
2

which, ing o = a,/a x = o’ Ja, i
hich, settin »/a; and 2 /a2, transforms into

src

2 3
o+ Xx _ 912 =k, (15)
1+x g,

where k, is the only term dependent on the data (and
affected by error). Thus,

)
e =y [ (16)
0

Once o, is known, the count rate I, is directly obtained
from equation (13).

Although this procedure is not the same as a fit (there is
just one curve of the family described by eq. [13] having
values g,, ¢, in a,, a,, respectively), it shares with a y? fit
the mentioned problem that g, and g, are not statistically
independent measures. This affects the determination of
errors on o, and I .. In order to overcome this difficulty,
we have developed an orthogonalization procedure to
derive such errors in the correct way, described in Appendix
C. If the relative errors on I, and o, derived in this way
are not <1, then this procedure is not correct, and we must
use the zeroth-order approximation for I, and o,,; the
errors on rate and size in this case are computed in
Appendix C as well.

For some purposes, it may be useful to estimate the
number of source counts, N,.. This may be derived from
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I, already computed, using a suitably weighted exposure
time ¢, (Which is not the same as t.;; defined in § 4.2 and
Appendix B). To derive ¢, consider a source with known
count rate I, and size o,.; if the ith pixel in the given
source region has exposure t; and a fraction e; of the source
photons falls in it because of the finite source size, then the
total number of recorded source counts is

Nsrc = Z Isrc ti ei . (17)

If w; are the coefficients of the WT at the source position at
ascale a = a,,,,, then the source count rate is derived as

max>

Isrc = gw(amax) = % Z Isrc Wi ei . (18)
Therefore, 0, = Nof/I ;o Will be
9 ).te
ZI lel (19)

t = —
phot )
8> wie

which allows us to derive N, once I, is known. Where
t;~const =T over the source region, we have f,,, ~
teff ~ T.

4.6. Upper Limits

The large areas of the image that do not contain sources
above threshold still contain valuable information. Upper
limits to fluxes (e.g., in X-rays) at the positions of objects
known from other wavelengths can be important (e.g.,
“dividing line ” for stellar coronal activity, Linsky & Haisch
1979; Ayres et al. 1981). To estimate these upper limits, we
proceed in an entirely analogous way to source detection.
A given undetected source will have a size determined by
the local PSF, o, = gpsr if it is pointlike, or o, =
(0Bsr + 035 "/? if it has a finite projected size o,,,;. Assign-
ing o, fixes the shape of the WT amplitude w(a) of the
source, defined by equation (5), letting free its normalization
I,,., namely, the source count rate. For increasing I, the
source WT profile w(a) will shift upward, until for some
scale a it will be equal to the threshold WT amplitude curve
wo(n, q)/t.s for no source detection, defined by equation (7)
in § 3, scaled by t. defined in Appendix B since we are
working on the WT of a count rate image. The threshold
curve at a significance level no depends on the photon
density ¢ (§ 3) but may be defined as a function of a once the
background density b is known, since g = ba?. A source is
marginally detected (at no significance level) when its w(a)
profile becomes tangent to the threshold significance curve
at no (see Fig. 8):

2Isrc Wo(n, ba2)
[1 + (O-szrc/az)]2 N teff .

This condition applies for a scale a ~ a,,,, = (3)/* 6., (@ =
A, €xactly in the continuous limit), which, inserted in
equation (20), allows us to derive the no limiting count rate
I,,.. The background density b needed to define the proper
significance curve should be defined on a scale close to a,,,,,,
as for source detection. If we want to compute the upper
limit close to a detected source (within a few times opgg),
then a correction must be applied; this is derived in
Appendix D.

The upper limit computed in this way for point sources in
every position in the field of view makes a self-consistent
limiting sensitivity map for point-source detection in a

w(a) = (20)
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Fi1G. 8—Comparison between the function w(a) (dotted and dashed
lines) and detection threshold curve w(k, q) (solid line), to evaluate upper
limits. The threshold curve is computed assuming a background density
b = 1.0 counts pixel ~2, and the w(a) curves are computed for a source size
g, = 10 pixels and three different count rates I, (normalization). The
curve w(a) labeled as “detected ” is higher than the threshold between the
scales a, and a,, and such a source is therefore detected at scales in this
range. The curve labeled “undetected ” never crosses the threshold, and the
source is not detected at any scale a. The “marginal” case (dotted line)
corresponds to a source that is barely detected at one single scale a,: the
normalization corresponding to such a case yields the upper limit I,. on
the count rate of an undetected source, with the given size o, and local
background.

given observation. Depending on the particular application,
such a sensitivity map may even be constructed without
correcting for the presence of sources; for example, this
would allow us to know how much farther the detected
sources themselves could have been located, while remain-
ing detectable with our method.

4.7. Ellipticity of Extended Sources

If a source is found as extended, then we may relax the
assumption of isotropy that we made from the beginning,
and study if the source has an elliptical shape, through a
suitable change on the generating wavelet. Of course, such
an analysis is mainly worthwhile if the source was detected
with sufficiently high significance.! In this subsection we
assume that our source has an elliptical shape, with a
Gaussian profile along each axis:

Src

s(x’ y) = 27'[0'10'2

X e~ [(x cos Os+y sin 05)2/2612] —[(— x sin Os+y cos 05)2/2622]
b

1)

! 1t is, in principle, possible that a weak elongated source be significant
only when an anisotropic wavelet is used. We nonetheless prefer to do the
initial source search using an isotropic wavelet, since the use of anisotropic
wavelets would enormously enlarge the parameter space to be searched
(two wavelet scales plus position angle) and therefore the computational
load, with only a very modest expected increase in the number of detec-
tions.
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0, being the source position angle, and g, , its widths along
two perpendicular directions. I is the total source count
rate.

We can accordingly generalize the generating wavelet of
equation (2) to a form g(x, y, a4, a,, 0,,), which includes a
dependence on two scale parameters a,, a, and one wavelet
position angle 6,,. The convolution of this function with the
elliptical source yields a function w,..(a;, a,, 7, 0,
0,—0,, I..). The study of this latter function for variable
a;, a, and 0, allows us to derive the source geometrical
parameters o, ¢,, and 0, and its intensity I,.. Details of
these computations are described in Appendix E.

5. SUMMARY AND CONCLUSIONS

In this work, we have developed the general mathemati-
cal aspects of a wavelet-based source detection algorithm,
to be applied to images obtained with current photon-
counting detectors.

In the analysis of such images (e.g., X-ray images), we are
faced with special difficulties, only rarely encountered, for
example, in optical images: the image may be significantly
vignetted, it may be partially obscured by sharp ribs, there
may be quantum efficiency variations, and the PSF may
vary strongly with off-axis angle. While this last property is
easily handled using wavelets, the first three are not, and we
had to devise a special technique, resorting to the obser-
vation exposure map to compute a count rate image (flat-
fielding) and then reconstructing the statistical properties of
the transform as if it were done on the original photon
image. We have paid particular attention to statistical
issues, in order to derive accurate thresholds to discriminate
background fluctuations from true sources at an assigned
confidence level. To do so, the probability distribution of
WT values obtained by transforming a flat background
noise has been studied in detail.

After a multiscale process of source detection and verifi-
cation, properties such as source count rates and sizes (and
possibly ellipticity) are derived, as accurately as the avail-
able photon statistics permits. Errors on these quantities are
computed in a statistically accurate way as well. We evalu-
ate upper limits on a list of positions, based on essentially
the same principles that allow us to estimate count rates for
detections; this enables us to build a self-consistent sensi-
tivity map over the entire field of view. The whole detection
process occurs in two steps, which differ in the way the
background is computed: in the first one, a smoothed (local)
background map is computed irrespective of the presence of
sources, while in the second one a similar map is inter-
polated over detected source regions, thus more resembling
a “map ” method.

Of course, the application of the method to images
obtained with a given detector requires a fine tuning to take
into account the detailed properties of the detector. Among
the most important differences between various detectors,
from the point of view of implementation of our algorithm,
are the shape and sharpness of image edge, the presence of
underexposed regions (ribs or interchip gaps), and espe-
cially the average background density u. The former two
problems may be dealt with relatively easily through the use
of the exposure map. A problem may instead arise if the
background density per resolution element is very low,
namely, if poage < 1, since in such a case it becomes difficult
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to evaluate accurately the local background, especially
where the source density is high. Such a problem may occur
with short exposures (as it was also the case for the Einstein
Slew Survey; Elvis et al. 1992) and with high-resolution
detectors, and will be extremely relevant for the AXAF
HRC/ACIS detectors, having an extremely narrow PSF.
Obviously, a compromise must be achieved between sta-
tistical significance and “locality ” of the used background
representation.

Notwithstanding such a difficulty of building an accurate
background map, which is also shared with many other
source detection schemes for photon-counting detector
images, with the wavelet approach we are able to deal with
images consisting of sparse arrays of one-photon pixels,
since we have calibrated WT detection thresholds down to
low values of (scaled) background ¢, in the “discrete
photon ” limit.

Besides being appropriate to analyze low-exposure or
high-resolution images, such a kind of situation also occurs
if in place of single photons one has other objects, for
example, stars or galaxies, and one is interested to find local
clusters of such objects (“sources”) in projection onto the
sky plane (or any other plane). WTs have already been
applied to this problem by Slezak, Bijaoui, & Mars (1990),
Escalera & Mazure (1992), and Escalera, Slezak, & Mazure
(1992), but only using an approximate statistical treatment
of the WT. To approach this problem with our method,
only little modifications are required to the procedure
described in this paper; among the most significant are the
following. First, the position of such individual objects is
usually known with high accuracy (with respect to their
average apparent separation), so that the image “PSF”
may be taken as zero, unlike the case dealt with here, in
which the PSF size sets the smallest length scales on which
information is present in the data. This implies that the
minimum and maximum scales for WT analysis may be
difficult to define. Moreover, as is typical of the discrete
photon limit, the local background level (density of objects
outside clusters) may be difficult to determine, since this
necessarily requires some average over large regions, poss-
ibly including clusters themselves.

Because of the form of the generating wavelet g(r/a)
chosen here, the WT is more sensitive to positive fluctua-
tions (peaks) in the data than to negative ones (holes), which
in the context of object cluster detection may occur, e.g.,
because of local enhanced obscuration (dark clouds). To
detect these “holes” in the data, some other generating
wavelet g(r/a) may be more appropriate, such as, for
example, simply the negative of g(r/a), which we define as
g (r/a) = —g(r/a), having a strong negative minimum for
r=0. The corresponding WT is of course w™(x, y,
a) = —w(x, y, a), with thresholds wg = —wy(k, q) (eq. [7]),
which amounts to compute the WT exactly as before, find
its negative peaks w,,;,, and select a source (i.e., hole) as
significant if —w_;, > wq(k, 9).

A further generalization of WT analysis is its application
to three-dimensional data sets, made, e.g., of projected sky
positions (x, y) plus a distance z (spectroscopic parallax, or
redshift) for a list of objects. The “ Mexican hat” generating
wavelet may then be generalized to three dimensions, as

2
g@ - <3 - 2‘)‘” L P=x P+, (22
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in order to ensure its volume mean to be zero. It is then
necessary to recompute all probability distributions P (w)
and to use a proper three-dimensional background map. All
other steps remain essentially the same, except for the
increased computational load due to the extra dimension.
The three-dimensional WT analysis would of course allow
the detection in the real space of star or galaxy clusters,
which may not be evident when projected on the plane of
the sky, because of the increased background of objects.
Finally, a generalization is possible to more dimensions,
including, e.g., the energy and arrival time data for detected
photons in a X-ray data set, in addition to position. Such
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generalizations are, however, beyond the scope of this
paper.
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APPENDIX A

DERIVATION OF THE PROBABILITY DISTRIBUTION OF THE WAVELET TRANSFORM OF
BACKGROUND NOISE

In this Appendix we study the probability distribution of WT values resulting upon transforming a background noise
image, with the purpose of deriving thresholds for source detection in the WT space. We examine both cases of very low and
high background, whose statistics are markedly different.

1. One background photon—For one background photon in a circle of radius 5a around a fixed point (x,, y,), the
probability that this photon falls in a surface element dA4 around a point (x,, y,)is

P(x,, y,)dA = A . (A1)

257na?

Then, the image to be transformed is f(x, y) = d(x — x;, y — ¥;), and its WT in (x,, y,) is w = g(r/a), where r* = (x; — x,)>
+ (y; — ¥o)*. Defining z = r?/a?, we have a WT of the form

WD) = (2 —2e 2, (A2)
and a probability distribution
P(z)dz = 5 dz . (A3)

Now, the probability that the value of the WT falls in an interval w, + dw, is the sum of probabilities that z falls in any
interval z; & dz; such that w(z;) = w, (inverse images of the interval w, + dw, on the z-axis), namely,

P(wo)dw, = z P(z))dz; (A%

(see Fig. 9). For a fixed w, > 0, the equation w(z) = w, has only one solution, z; < 2 (and the above sum contains only one
term), while for w, < 0it has two solutions, z; < 4 and z, > 4 (two terms in the sum). Therefore, the probability P(w) is

dz 1
PW) = Pz)| = | = ;
(W) (Zl) dW . 25(2 _ 21/2)6_21/2 ) (W = 0) >
(A5)
dz dz 1 1
Pow) =Pz) | 5ol TP@) G0l = 25@ =z pe 2 T i n— e WSO

Since the function w(z) cannot be inverted analytically, we cannot write P(w)dw explicitly as a function of w; rather, it has been
computed numerically, and it is shown in Figure 10. The distribution is highly asymmetrical (although it has zero mean), with
tails up tow = 2 (for z = 0) and down to w = — 2e™ 2 (for z = 4); photons falling at larger z, for which w(z) tends to zero from
the negative side, build the strong peak of P(w) just below w = 0; the nonmonotonicity of w(z) makes P(w) discontinuous in
w = 0. We shall refer to this distribution as P,(w), since it refers to one background photon.

2. Two or more background photons.—If there are two background photons in the same area A = 25na?, then the total WT
will be w = w(z;) + w(zy), since the WT is a linear transform, where z; and z;; refer to the first and second photon, respectively,
and w(z;) and w(z;) are both distributed as P;(w). Under these circumstances, the total w will have a probability distribution
P,(w) = P;(w) ® P{(w), namely, the convolution of two one-photon distributions. Of course, this is generalized for the
probability distribution P,(w) for n background photons,as P, = P, ® P, ® - - - ® P, (P, convolved n times with itself). As is
known, convolution is best done in Fourier space, where it involves a simple product of functions. We need, therefore, to
compute the Fourier transform of P, (w), say P(p), raise it to the nth power, and transform it back to get P,(w).

The Fourier transform of P,(w) is

P(p) = rw e PP (w)dw = J

— 0

25

25
e~ P29 p(z) 1y = o J e PR gy (A6)
0
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z = (r/a)?

w<O

F1G. 9.—The function w(z) and the mapping of an element dw on elements dz; on the z-axis

This integral can be hardly evaluated analytically, so we have computed all Fourier transforms numerically, using FFT
routines. In general, we are interested to know in detail the positive tails of the distributions P,(w), say at probability levels
equivalent to the Gaussian 3 o to 5 o, to discriminate well true sources from background fluctuations and obtain a very small
number of false detections even after having tested a large number of positions (“trials ”). For example, the threshold value
w = w, corresponding to a probability level of 0.9999998 (5 ¢ for a Gaussian distribution) that w > w, is not due to a
background fluctuation is given implicitly by the following relation:

wo
1- J P,wdw=2x10"". (A7)
Such a determination of w, for a given probability level is near or even beyond what can be computed with the finite
numerical precision of the “standard ” numerical approach using FFTs. This latter method therefore should not be used to
derive confidence levels for w, but simply to illustrate the shape of P,(w) for various n and to show the existence of the two
limiting behaviors of “ discrete photon limit” for small n and the “continuous limit ” for large n (§ 3). As explained in § 3, it is
also useful to define the dimensionless background parameter g = ba?, on which the distributions P,(w) depend. In our case,
since b = n/25na?, we have q = n/25n.

In the continuous limit, when the photon statistics per pixel becomes Gaussian, P,(w) tends to a Gaussian distribution, as
may also be derived from statistical arguments (central limit theorem). The integral

w= J<2 - Z—i)e"z/ 2a2((r, O)d*r (A8)

defines the WT of the background noise f(r, 6) (=number of photons per unit area, whose spatial average is a constant
background density u); it may be approximated as a discrete sum of terms (a finite number since the integrand is effectively
nonzero only in a finite region): w = Y, w;n;, where w; = [2—(r?/a®)]e"*/***, and n; = f(r;, 0,)4; is the number of photons
falling in the area A; around (r;, 8;). We suppose that the r; values are spaced closely enough that differences between w; and
w;,, are so small that the summation approximates well the integral for w. If the n; values all have a Gaussian distribution
with mean {n;> and variance ¢? both equal to uA; (the limiting form of a Poisson distribution for large n), then their linear



No. 1, 1997 WAVELET TRANSFORM-BASED SOURCE DETECTION. I. 363

3
S [ i
—
o
o ]
—
o ]
—
z
o
- - ]
— [ _
o
—
© K | | | | +
o
-0.5 0.0 0.5 1.0 1.5 2.0 2.5
w

FiG. 10—Probability distribution P,(w) for one background photon falling in an area 25ma®. This distribution is normalized such that | P (w)dw = 1,
despite P,(w)> 1 for some values of w.

combination w just defined will have a Gaussian distribution as well, with mean

2
wy = Z wn) = u Z WA - p J(z - %)e—ﬂ/Zaz d’r=0, (A9)

and variance

2

2
i =Y wiot =uSuidin [(2- 5 e = et = 200, AL

on the basis of the convolution theorem. The variances 62 computed in this way are in excellent agreement with those of the
distributions P,(w) (in the continuous limit) derived using FFTs. FFTs are a good test in this case since we are comparing
variances and not higher quantiles.

In the discrete photon limit, where no analytic approximations are available and FFTs are too noisy to reach the desired
confidence levels for w, we have evaluated probability distributions P,(w) through Monte Carlo simulations, made for various
values of g. As mentioned above, the value w, corresponding to a 5 ¢ probability level (cumulative P = 0.9999998) is such that
w > w, occurs 2 times in 107 trials. For each g, therefore, we have realized 107 simulations of a uniform background,
computed their WT, and built the distribution of w; we have then evaluated the upper quantiles of the distributions P (w)
computed in this way, up to the 5.5 ¢ quantile, with increasing accuracy toward lower quantiles because of the better
simulation statistics. The results of these simulations are shown in Figure 5 (§ 3) as filled circles. We have also verified that for
g > 300, P,(w) becomes nearly indistinguishable from a Gaussian with the expected variance 62 = 2nq (continuous limit), in
close agreement with the computations previously discussed.
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APPENDIX B

CALCULATION OF EFFECTIVE EXPOSURE TIME

The effective exposure time t.;; defined in § 4.2 has the purpose of permitting a comparison between the positive fluctuations
found in the rate WT with those expected from the neighboring background, to establish if they are real sources or not.
Therefore, its meaning is that of a tool to convert detection thresholds between the case of a (rib-free) photon WT and that of a
rate WT under examination. Note that ¢ defined in this way is not a source exposure time to be used to convert a source rate
to source total counts; this latter is introduced in § 4.5.

We have introduced the threshold w(k, g) for the photon WT in § 3 and now call w,,(k, q) the corresponding threshold for
the count rate WT, such as w,(k, q) = wy(k, q)/t.;s- The parameter g, defined in § 3, is the same for wy(k, q) and w,(k, g), since
in both cases it is computed from the background map. An analytic expression for ., may be found in the “continuous limit ”
introduced in § 3; roughly speaking, this limit is applicable when there are many photons per pixel (which unfortunately is
usually not the case below ribs). However, this way to compute ¢ is probably the best one before resorting to empirical
methods. In the continuous limit we have simply wy(k, q) = k(2nq)'/>.

Suppose to have a uniform cosmic background emission, yielding a count rate of R photons s~ ! pixel ! just before
reaching the detector with its spatially varying effective exposure time. After interaction with the detector, the number of
photons in the ith pixel (having effective exposure t;) will be n;, Poisson-distributed with mean y; and variance 67, y; = 67 =
Rt;. The WT in a point P of such a background count rate image, modulated by spatially nonuniform exposure, is computed

as(seeeq.[1])

n;

w(—) =Y w 't'— , (B1)

L

and its variance, computed as a quadrature sum, is

2 2
oa,<ﬂ>:zwi 2= " Ry, =RY

2
: =, (B2)
ti i ti i ti i ti

assuming the ¢; values are free of error. In these and the following equations, the writing w(x;) [or 62(x;)] refers to a quantity w
(6?) that is computed from a set of pixel values x;. The coefficients w; are defined as w; = g(r;p/a), where g is the generating
wavelet (eq. [2]), r;p is the distance between the ith pixel and the point P, and a is the WT scale; moreover, all sums are to be
intended as two-dimensional, running over all image pixels. Suppose now that the same background is observed with a
similar detector, but free of spatial variation of exposure in the source region, so that t; = const = T. The variance of the WT

of such a new background, yielding n; photons/pixel, is therefore

2 (M R 2
Ly 2 2 B3
A(0)-Es -
and the ratio between the two variances is
s (ni/t)) T Zi wi/t;
oL(myT) Y w}

Furthermore, o2 (n}/T) = (1/T?)62 (n}) = (1/T*)2nq. Since in the continuous limit the ratio w,/w,, (=t.;) between detection
thresholds for photon and rate WT, at the same confidence level ko, is equal to the ratio between the standard deviations of
photon and rate WT, respectively, we can write

(B4)

a%@‘idw=”% (BS)

42 2
ti tef f teff

IT Y, w?
Legr = % ’ (B6)

which solves our problem. In order to be applied in our case, T is the slowly varying vignetted exposure time we would have
in the absence of ribs, in the same position, and the reference background variance 62 (1)) = 2nq is accordingly computed for a
vignetted background but unobscured by ribs. Such a background has been computed, as explained in § 4.1, by interpolation
over ribs, even at positions actually covered by ribs, and needs not to be recomputed. Although derived in the continuous
limit, this expression for ¢, works generally fine to define proper detection thresholds; we present in Paper II tests showing
that there is no appreciable excess of spurious sources near ribs because of large count rate fluctuations and that at the same
time a good detection efficiency is retained. If all ¢; values are nearly equal,t; ~ T, thent.; ~ T as well, and equation (B6) may
therefore be used far from ribs as well.

therefore,
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APPENDIX C

DERIVATION OF ERRORS ON SOURCE COUNT RATE AND SIZE

In this Appendix we present a statistically accurate derivation of errors on count rates and sizes, needed since the latter
were evaluated in § 4.5 on the basis of nonindependent measurements. We use here the same terminology used in that section.
There, the size and count rate for a source were derived from two values, g, and g,, of the function y(a) at the source position,
computed respectively at two scales, a, and a,, close to a,,,.

Since our derivation of o, depends only on the ratio r = g,/g,, we should evaluate the error on such a ratio of nonin-
dependent measurements. To do this, we first note that g, and g, are computed as linear combinations of the count rate image
pixel values x;, namely,

=Y gix (C1)

The sum is two-dimensional, over image pixels; the coefficients are defined in terms of the generating wavelet g(r/a) (eq. [2]) as
g’ = g(r;/a,)/a,, where r; is the distance between the ith pixel and the source position. This is analogous for g,. We may then
write g, as the scalar product g, = g, * x, where g, is the vector made of all g coefficients, and x is the vector of pixel data x;.
The lack of statistical independence of g, and g, then arises because (in general) they are not orthogonal linear combinations
of the data x;, namely, g, * g, # 0. In order to have two independent measurements, we should orthogonalize in a proper way
the vectors g, and g,. Before doing that, however, we have to normalize the data vector x by dividing each pixel x; by its
standard deviation o;, yielding a modified data vector x’ whose elements are x; = x;/o;. Failure to do so would never yield
orthogonal g, and g,: suppose that we have a prominent pixel x, > x,., (and o, > g,.,), which implies g, ~ g% x, and
g, ~ g5 x;, causing g, and g, to be strongly correlated, no matter how they have been orthogonalized. Having changed x into
x, we modify accordingly g, , into vectors g} , with elements g , = g/ , g;, in order that the scalar products g, , remain
unaltered: g, , = g, , * x = g1, * ¥. We then write r as

=4 AT (&)
9> 82°X
To separate g} into two components, respectively normal and parallel to g5, we apply a Gram-Schmidt orthogonalization
procedure:
& 218
g =[g’ —s’(‘ +25( %, =g +&, (C3)
! ! g g & 2 2 & ’ ¢
where g5 (L g5) is the term within square brackets in the middle expression, and g/, (|| g5) is the last term. Then we write:
g 3° g4 X g g3 8182 g3
v === + =4k, . (C4)
g g <gl 2 & 2> 9> !

The term k, (last term) depends only on the coefficients g’l", » , known with no error if g; are so (as we will assume); therefore, it
is a constant additive term to r and does not contribute to the error on r. This term contains the “parallel” part of g,, which
varies in proportion to g,. The error on r is thus entirely given by the error on the ratio between g; and g,, which now are
statistically independent (since g5 L g5), allowing us to compute the error o, on r using classical methods: ¢7/r* = 03/
g3 + 63/g3, where 05 (03) is the error on g, (g5), 03 =Y. (9%9)*(0)* = Y (94)? since the error on x; is 6} = ¢;/0; = 1 (and an
analogous expression for ¢2). Having found the error on r, and therefore also the error ako onk, = (ra3)1/ 2 (see eq. [15]), we
derive easily the error o, on x = ¢2/a} from equation (16), since we have o, = [ |1 — o«* |/(ko — 1)*]0},, from which the error

Ao, on source size o, is derived.
As for the error on the source count rate, we may write a suitable expression for I :
2 2 2 _ 1 2 1
Ism — gl al <1 + 0-51'2C> — al(a ) - L (CS)
2 @ L (NCYNCB RN CINED)

Defining ¢ as

ay(o> — 1) _ Jo 1 (C6)
2. NN

we have, with the same formalism as before,

1 1./a? k 1 11
dc = \/— dg, + —— < = ) 5 7 495
NG R R v A N e
Here, we have again decomposed the variation dg, of g, into two parts,dg, = dg; + dg.,, respectively orthogonal and parallel
to dg, (namely, unrelated and proportional to dg,, respectively). Note that dg, (k = 1-4) is the variation of g, due to variations

(€7
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of the data x;, not of the fixed coefficients g . The “ parallel” part dg,, is

dg, = dgz(g L ,g2> — ky dg, , (C3)
g, 8

allowing us to write the last equality of equation (C7). Then,

k, 1 1. /a2 1
af=<J~———""——>62+——02, (C9)
2 i 2y
from which we derive easily the error on I, Al,, using equation (C6).
If the errors Ao, and Al thus derived are not small compared with o, and I ., the assumptions of the procedure are

violated, and we then use the zeroth-order approximation to evaluate o, and I .. In this case, errors are computed as
follows: since the spacing between adjacent scales where we evaluate y(a) is a factor (2)'/, the error in our derivation of a,,,,

(and then o) should be at most a factor 2°-2°, namely, Aa,./0,,. = 2°2° — 1 ~ 0.19. To derive the error on I,,, we start from
the expression given in equation (C5), to derive
dI d 4 2 d d
src gl O.src/al dGsrc — & + Osre , (CIO)

Isrc B Z (1 + O-s2rc/a%) 91 Osre

the last passage being made since a; = d,,, = (3)'/? 04,.; therefore, (Al /I..)* = 63/g7 + (Ad./o.)*. Errors on rates and
sizes evaluated directly from simulated data (Paper II) are in agreement with those estimated here.

APPENDIX D

CORRECTION TO UPPER LIMITS NEAR DETECTED SOURCES

If we have an estimate of the background at the position of a point source, which is virtually unaffected by the presence of
that source (as for the background correction of § 4.1), the upper limit computed as in § 4.6 will be smaller than the detected
source count rate. This is obviously incorrect, since having actually detected the source, we cannot possibly find a weaker one
in the same position, nor very close to it (compared to opgr). We should therefore find a correct way to compute upper limits
near detected sources. The detection of more sources close to an already detected source is essentially limited by the detector
spatial resolution, rather than its sensitivity; to evaluate true upper limits near detected sources requires consideration of our
ability to detect separately close sources.

1. Two sources of equal strength—Suppose there are two identical sources (pointlike, i.e., Gaussian with width o, = opgp),
separated by a distance d. It is simple to show that their overall spatial distribution of photons (assuming infinite photon
statistics) makes two distinct peaks if d > 2 opgr, While the two sources are blended together for smaller separation d. Our
method is, however, based on the search for peaks in the WT of the image, not in the image itself, so that we need to compute
the smallest separation d for which the two sources give rise to two distinct peaks in the WT. The WT of a point source with
width o, computed at a scale a is given by equation (4). The WT of both sources, computed along the direction of their
separation, is proportional to

2 V2
I(x) = <2 — Z—Z>ex2/2b2 + (X|:2 o (x bzd) :|e(xd)2/2b2 , (Dl)

where b = a® + o2, and o < 1is the source intensity ratio; the stronger source lies in x = 0 and the fainter one in x = d (Fig.
11, top). For two sources of equal intensity (¢ = 1), a minimum of I(x) occurs for x = d/2 by symmetry, if the sources make
distinct peaks. If this is the case, we have (d°I/dx?)|,_4, > 0; two sources are marginally resolved if

a1
— =0. D2
dx? x=dJ2 02
This implies, after some algebra,
a* d?
i 85+64=0, (D3)

and d?/b* = 14 — (132)Y/2 ~ 2.5. Therefore, d > (2.5)}/*(a* + o2%.)"/2. If the scale a — 0, then we have the surprising result that
the minimum distance d,,;, for resolving two sources is d,;, = (2.5)? o, ~ 1.6 6., < 2 0., namely, the WT may have two
distinct peaks where the original image shows two blended sources, acting as a sort of deconvolution. This is so because the WT in
a point “sees ” the photon distribution in the neighborhood of that point, not just in the point itself. However, this attractive
property of the WT is of little use, except for the brightest sources, since the amplitude of w(a) tends to zero as a* when a — 0
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Fi1G. 11.—Profiles I(x) of the WT of two close sources, along the direction x of their separation; the two crosses at I(x) = 0 in each panel mark the position
of the two sources, in x = 0 and x = d, respectively. All sources have a width b = (a® + ¢2,)"/* = 1. The three top panels refer to two sources of equal
intensity, while the three bottom panels refer to two sources with intensity ratio o = 0.57. Top left: The two sources are unresolved, sinced < d,; (¢ = 1) =
1.585. Top middle: The two sources are marginally resolved [d = d, ;. (¢ = 1)]. Top right: The sources are well resolved [d > d,;.(x = 1)]. Bottom left: The two
unequal-strength sources are unresolved, since d < d,;,(« = 0.57) = 1.9. Bottom middle: The two unequal sources are only marginally resolved, d = d; (o« =
0.57), despite the fact that their distance is the same as the two resolved sources of the top right panel, showing the dependence ofd,,;, on a. Bottom right: Two
unequal sources resolved, d > d_; (« = 0.57).

min

(§ 2); weak sources, indeed, are detected only at scales a close to a,,,, = (3)*/? 0., and in this case we would have d,,;, =
(2.5)'*2 o, > 2 6., larger than the minimum peak separation in the photon image.

2. Two sources of different strength—If the two sources have unequal intensities (« < 1), then d;, will be a function of the
intensity ratio a that can be inverted to yield « = a(d,,;,). If I, is the count rate of the stronger source in x = 0, then the upper
limit on the count rate of another source in x = d is Ij;,, = max [I,.d;,), I.], where I3 is the limiting count rate
computed in the absence of the stronger source, simply because we would be unable (with the given detector and detection
algorithm) to separate the two sources for a lower I};,, (although the sensitivity itself of the detector may allow the detection of
the latter source down to a count rate I, if the former source were absent).

To compute a(d,,;,), we need to find out the parameter values o, d,,;,, for which the two WT peaks (maxima) associated with
the two sources start to merge together; in this case, the position of the minimum of I(x) between the two sources and that of
the maximum of I(x) associated with the weaker source coincide (Fig. 11, bottom). In formulae:

dl =0= <_ 4_x + x_3>ex2/2b2 n a|:_ 4x —d) n (x — d)3:|e(xd)2/2b2 ’

dx b> " b* b? b*
a1 4 Tx* x* — 222 4 Tx—d (x—a? —(x—d)2/2b2 .
pr i S L . R T T -

Combining these two relations, one obtains a relation between the position x of the minimum and the minimum separation
d .in, namely (after long passages, and setting y = x/b, z = d/b),

2y — 3z2y° + (32° — 52)y* + (1022 — z*)y3 + (162 — 92°)y* + (4z* — 162%)y + (162 — 4z°) =0 . (D5)

This sixth-degree equation in y has among its solutions y = y(z) one that for « — 1 tends to the previously derived value,
namely, approaching y = d/2b for z = d/b/(2.5)"/* (minimum separation for « = 1) and disappearing for lower z, since for
d < (2.5)%b no source may be separated, whatever the value of «. Writing this solution as y(z), we have x = by(z) =
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by,(d/b), and we then use equation (D4) to derive « as a function of d:

4x — x3/b*
—4(x —d) + [(x — d*/b*]’
for d > (2.5)1/b, and « = 1 for d < (2.5)*/?b, where the limit count rate coincides with the count rate I, of the source detected
in x = 0. The above value of a(d) still depends on b = (a® + ¢2.)!/%. For point sources, 0., = 0psy, While a is not assigned;

however, we are interested to have the highest significance detection, since the above approach is rigorous for infinite
signal-to-noise ratio, so that we should choose a = a,,,, = (3)!/? o,,., and therefore b = 2 opg, for point sources.

o = elx—d2—x2)/2b2

(Do)

APPENDIX E

DERIVATION OF GEOMETRICAL PARAMETERS FOR EXTENDED SOURCES

To derive the geometrical parameters of extended sources (semiaxes and position angle), we now generalize the generating
wavelet of equation (2) to the following form:

(x cos 0, + ysin §,)*  (—>xsin 6, +y cos 0w)2:|

s Vs > 90w= 2—
g(xya1 a; ) [ a% (l%

(ED)

X e~ [(x cos Oy +y sin 0y)2/2a12]—[(—x sin Oy +y cos Oy)2/2a22]

The elliptical source s(x y) defined in equatlon (21) will still yield a peak in the WT at the position of its center. The value Wpeak
of the WT at the peak is computed as in equation (1), with f(x, y)=s(x, y), and after some lengthy calculations may be put in
the following form:

2+(01/a3,) + (05/a3))

0,1.)=1I E2
Wpeak(ab ay, 01, 0,, 0, src) src [1 + (a%/agl) + (O_g/agz) + (afa%/a% ag)]3/2 ’ ( )
where 0 = 0, — 6,,, and
1 cos? 0 sin? 0\ 1 cos? O sin? 0
_2=< 7t 2>’_2=< 7t 2)' (E3)
ag, aji az ag, az ai

Of course, the individual position angles 6, and 6, are not important, and the WT amplitude depends only on the relative
position angle 8 = 0, — 0,,.

If 6, = g, (isotropic source), it is easy to see that w,.,, Will no longer depend on 6. This is also the case whena; = a, = a,
since we then have ay, = a,, = a: an isotropic generating wavelet cannot of course yield information on position angles. For
0, =0, = 0,.and a; = a, = a, W, reduces to the form given in equation (5) of § 2. As a function of 6, ., has a maximum

eak
for0 =0(if o, > 0, and a, > a,), and the general expression for w,, (0 = 0)is ’
[1 + (o%/a)] + [1 + (03/a3)]
W@ = 0) = I, , E4
peal0 = 0 = e {1 G a T + 03/ad]} =y
dependent only on the two ratios ¢,/a, and o¢,/a,. For o,/a, and ¢,/a, both going to ZETO, Wpeax = 2I..; the function

Way, a,) = Wyeif(ay a,)''?, analogous to y(a) = w(a)/a defined in § 2, will therefore have a maximum for finite ¢, /a, and az/az,
which occurs for g,/a; = 02/a2 = 1/(3)/2, as in the isotropic case. Contours of equal values of the function y(a,, a,) in the
(6,/a,, 0,/a,) plane are shown in Fig. 12.

The maximum of y(a,, a,) as a function of a;, a,, and 6,, occurs therefore for 0,, = 6,, a, = (3)"? 6, a, =(3)'* o
Therefore, to find the semiaxes ¢, and ¢, and position angle 6, of an elliptical source would in principle require the
exploration of a three-dimensional parameter space (a,, a,, 0,,) to find the maximum of y(a,, a,).

However, we know already that the source has been detected with a WT peak at a certain scalea
with a; = a, = a.In this case, the function y(a, a) = W,.,./a has the following form:

Woeak _ Lsre [1+(07/a®)] + [1 + (03/a%)]

using an isotropic WT

max>

_ , ES
a " a ([L+ el + (@ad]}" ®

whose maximum occurs for a scale a = a,,,,, satisfying the equation
3(0’%4—:‘%)0’%0’%4_102‘%0’%4_0’%1—0‘%_220. (E6)

a a a

max max max

The solution a,,,, of this equation may be written in the form

e —f(2). )

max
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F1G. 12—Contour plot of the function y(a,, a,) = W,,./(a, a,)"/* in the (¢,/a,, 6,/a,) plane, for a source with total intensity I,,, = 1. The cross indicates

src

the position of the maximum, for ¢,/a, = o,/a, = 1/(3)/%. Contours are labeled with the value of y(a,, a,), assuming ¢, = 0, = 1, and at maximum
way, a,) = (27)"/?/8 = 0.6495.

where f'is a complicated analytic function. Then, we analyze the source with an anisotropic wavelet with (fixed) scales a; and
a,, respectively larger and smaller than a,,,, [for example, a; = (2)'/?ay,y, 3 = Gmay/(2)'/*], and with variable 0,,. Having fixed
a; and a,, Wy, is now only a function of 6 = 6, — 6,,, whose maximum (occurring for 6 = 0) indicates the position angle 6, of
the source. The function w,,,(0) has a period of 7, a minimum occurring for 6 = n/2; the modulation amplitude A4, =
Woea(0 = 0)/W,eai(0 = /2) is a function of ¢, /5, and is very sensitive to this ratio for values ¢,/0, < 10, which includes most
of the range observed for astronomical sources, with the above choice of a;, a,. The function 4,(c,/0,) may be inverted
numerically to derive ¢,/0,; using equation (E7), we then obtain the semiaxes ¢, and o, of the source, since a,,,, is known.
Eventually, the source intensity I,. can be derived from equation (E5).
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